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Fig. 1. Example trial in which participants reported whether there were more alien animal sightings early or late in the day (left) and
colormaps constructed from four color scales tested on black and white backgrounds in Experiment 1 (right). In the example trial,
the right side of the colormap is darker, the color scale is oriented so dark is high in the legend, and the legend text is positioned
so “greater” is high in the legend. However, the side of the colormap that was darker, the orientation of the color scale in the legend
(dark–high or light–high), and the position of the text in the legend (“greater”–high or “fewer”–high) were independently varied in the
experiment. Thus, participants had to interpret the legend on every trial to know the correct answer. The datasets used to generate the
colormaps also varied across trials (see Experiment 1 Methods for details).

Abstract—To interpret data visualizations, people must determine how visual features map onto concepts. For example, to interpret
colormaps, people must determine how dimensions of color (e.g., lightness, hue) map onto quantities of a given measure (e.g., brain
activity, correlation magnitude). This process is easier when the encoded mappings in the visualization match people’s predictions of
how visual features will map onto concepts, their inferred mappings. To harness this principle in visualization design, it is necessary to
understand what factors determine people’s inferred mappings. In this study, we investigated how inferred color-quantity mappings for
colormap data visualizations were influenced by the background color. Prior literature presents seemingly conflicting accounts of how
the background color affects inferred color-quantity mappings. The present results help resolve those conflicts, demonstrating that
sometimes the background has an effect and sometimes it does not, depending on whether the colormap appears to vary in opacity.
When there is no apparent variation in opacity, participants infer that darker colors map to larger quantities (dark-is-more bias). As
apparent variation in opacity increases, participants become biased toward inferring that more opaque colors map to larger quantities
(opaque-is-more bias). These biases work together on light backgrounds and conflict on dark backgrounds. Under such conflicts, the
opaque-is-more bias can negate, or even supersede the dark-is-more bias. The results suggest that if a design goal is to produce
colormaps that match people’s inferred mappings and are robust to changes in background color, it is beneficial to use colormaps that
will not appear to vary in opacity on any background color, and to encode larger quantities in darker colors.

Index Terms—Visual Reasoning, Visual Communication, Colormaps, Color Perception, Visual Encoding, Visual Design

1 INTRODUCTION

When people interpret colormap data visualizations, they are faced
with a task of visual reasoning—forming conceptual inferences from
visual input. For instance, to interpret weather maps, neuroimages, and
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gene expression matrices, people make conceptual inferences about
weather patterns, neural activity, and gene co-expression from perceived
variations in color.

Both perceptual and cognitive factors influence people’s ability to
complete this visual reasoning task. Perceptually, they must be able to
discriminate perceptual features that correspond to different quantities
(e.g., perceive a difference between two shades of blue that represent
different amounts of neural activity in neuroimages). Cognitively, they
must be able to comprehend concepts underlying the depicted data
(e.g., understand implications of observing greater neural activity in
one brain region than another). At the interface between perception and
cognition, people must be able to interpret how perceptual features map
onto concepts that are represented by the data (e.g., determine which
shades of blue map onto which amounts of neural activity).

During this process, people construct inferences about how visual
features map onto concepts, based on the visual input they perceive
and the relevant concepts in the particular context [36]. It is easier for
people to interpret visualizations when their inferred mapping matches
the encoded mapping in the visualization [25, 37, 45, 46], even when
a legend clearly specifies the encoded mapping [20]. The question



is, what factors determine people’s inferred mappings? To address
this question, we studied how inferred color-quantity mappings for
colormap data visualizations were influenced by relations between
colors within colormaps and color of the background.

From previous literature, it is unclear how varying the background
influences people’s inferred mappings for colormap data visualizations
(see Section 2.3.1). There are three types of biases that could deter-
mine inferred mappings, which have different implications for the role
of the background. A dark-is-more bias [9, 26, 30] implies people
infer that darker colors map to larger quantities, regardless of the back-
ground color. A contrast-is-more bias [22] implies people infer that
higher-contrast colors map to larger quantities, which depends on the
background (i.e., dark is more on light backgrounds; light is more on
dark backgrounds). An opaque-is-more bias implies people infer that
more opaque colors map to larger quantities, which depends on the
background in the same manner as the contrast-is-more bias, but only
when the colormap appears to vary in opacity.

We tested for these biases by presenting participants with colormaps
of fictitious alien animal sightings (Figure 1), and evaluating their
response time to report whether there were more sightings early or
late in the day. We varied the encoded color-quantity mapping in the
legend (“dark-more” or “light-more” encoding), as well as the color
scale used to construct the colormap and the color of the background.
By determining which encoded mappings resulted in faster response
times for different colormap and background combinations, we learned
about the conditions under which inferred mappings were affected by
the background. Our results demonstrate:

• The role of the background differs depending on the kind of
color scale used to construct the colormap and its relation with
the background. The background only matters if the colormap
appears to vary in opacity.

• When colormaps do not appear to vary in opacity, inferred map-
pings are dominated by a dark-is-more bias with no effect of
the background. This finding challenges a pure version of the
contrast-is-more bias.

• When colormaps do appear to vary in opacity, inferred mappings
contain an opaque-is-more bias. The strength of the opaque-is-
more bias depends on the strength of apparent opacity variation.
The opaque-is-more bias is a nuanced version of the contrast-
is-more bias because contrast with the background only matters
when there is apparent variation in opacity.

By distinguishing between dark-is-more, contrast-is-more, and
opaque-is-more biases, our results unite prior results and illustrations
in the literature, and resolve seemingly conflicting claims.

2 RELATED WORK

In this section, we first discuss related work on colormaps, followed by
the motivation for our current approach.

2.1 Colormap Data Visualizations
Previous work on colormap data visualizations can be grouped into
three main types: (1) designing color scales for colormaps, (2) selecting
color scales according to data and task, and (3) encoding semantics in
colormap visualizations. We briefly touch on the first two types and
then go into greater depth on encoding semantics, given that is the topic
of the present study.

2.1.1 Designing color scales for colormaps
Extensive research has focused on defining the properties of color scales
that result in effective colormaps. In a comprehensive review, Bujack et
al. [7] organized these properties into distinct categories, highlighting
three categories for which they defined mathematical formulations:
discriminative power, uniformity, and order.

Discriminative power relates to the amount of distinct colors ob-
servers can perceive in a color scale. Bujack et al.’s mathematical
formulation of discriminative power focused on distance in color space,
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Fig. 2. The top row shows value-by-alpha maps from Roth et al. [34] on
(A) white and (B) black backgrounds. The colormaps are different on the
two backgrounds. The most saturated color is interpolated with the back-
ground color, consistent with apparent variation in opacity. The bottom
row shows approximations of the colormaps from McGranaghan [22],
based on the color coordinates reported in the paper. The colormaps are
the same on the (C) white and (D) black background. The most saturated
color is in the middle of the color scale with lighter and darker colors that
are less saturated, inconsistent with apparent opacity variation.

but perceptual discriminability also depends on additional factors, in-
cluding trajectory in color space [21].

Uniformity relates to the consistency in perceived differences be-
tween pairs of equidistant points that are sampled from different parts
of a color scale. In a uniform scale, pairs of points that are equidistant
should appear equally different.

Order relates to the appearance that colors in the color scale follow
a natural progression. For some color scales, the order is easy to
perceive when viewed in scale format (e.g., in a legend), but the order
is difficult to perceive when viewed in colormap format, especially
when the positions of the colors are scrambled. Rainbow colormaps are
notorious for this problem [4, 7, 24, 32], but it has been argued that this
issue should not preclude their use [6, 28].

For thorough discussions on factors involved in designing color
scales, see Bujack et al. [7], as well as [39, 49], and references therein.

2.1.2 Selecting color scales according to data and task

Different color scales are more or less effective, depending on the
properties of data they represent and the tasks needed to interpret the
data (see [29, 39, 49] for reviews).

One important property of the data to consider is the format of
the underlying numeric scale (e.g., sequential or diverging) [5]. It is
widely held that sequential data—varying from low to high—should be
represented by sequential color scales—varying from light to dark or
dark to light. In contrast, diverging data with a meaningful midpoint
(e.g., neutral or average), should be represented by diverging color
scales with a clear perceptual midpoint (e.g., gradations of saturation
with an achromatic midpoint) [5, 33].

Another relevant property of the data is its spatial frequency com-
position. Rogowitz and Treinish [33] suggested using color scales that
vary in lightness to reveal high spatial frequency patterns (fine details)
and using color scales that vary in hue and saturation to reveal low
spatial frequency patterns (courser changes). However, recent evidence
suggests that hue variation helps observers perceive gradients when
there are high spatial frequencies [28].

People perform different kinds of tasks when interpreting colormaps,
which include detecting surface structure and identifying specific quan-
tities. Researchers have suggested that people are better at detect-
ing surface structure of scalar field colormaps when color scales vary
monotonically in lightness, compared to when color scales vary in
hue [42,47]. In contrast, people are better at identifying specific quanti-
ties when color scales vary in hue than when they vary only in light-



ness. [47]. Based on these findings, some suggested that “redundant”
color scales that vary in hue while also varying monotonically in light-
ness are robust for different kinds of tasks [29, 39, 47]. Indeed, Liu
and Heer reported that these kinds of scales were better for judging
relative distances between colors sampled from the scale, compared
with single-hue color scales varying monotonically in lightness and
multi-hue color scales varying non-monotonically in lightness [21].
However, Reda, Nalawade, and Ansah-Koi reported that for perceiving
spatial patterns in scalar field colormaps, multi-hue, divergent scales
with non-monotonic lightness variation might be best [28].

2.1.3 Encoding semantics in colormap visualizations
Once one selects a well-designed scale that is appropriate for the task
and data, one must decide how to map perceptual dimensions from the
color scale onto conceptual dimensions represented by the data. Should
larger quantities in the data be mapped to darker colors? To higher
contrast colors? To more opaque colors?

Dark-is-more bias Early empirical work in cartography reported
a dark-is-more bias [9]. When presented with choropleth colormaps
with no legend, participants inferred that darker regions represented
larger quantities.

A subsequent eye-tracking study found that participants fixated on
the legend less often and were more accurate at answering questions
for ‘conventional’ lightness-based choropleth maps with dark-more
encoding, compared with ‘unconventional’ hue-based colormaps [1].
These results suggest ‘conventional’ lightness-based choropleth maps
were easier to interpret. However, the authors did not test colormaps
with light-more encoding, so it is unclear if these differences were
because of a dark-is-more bias, or because it was easier to interpret
the ordering among colors in the lightness-based scale than in the
hue-based scale.

Contrast-is-more bias McGranaghan [22] suggested the dark-is-
more bias is a special case of a contrast-is-more bias, in which people
infer that darker colors map to larger quantities on light backgrounds,
but lighter colors map to larger quantities on dark backgrounds. Mc-
Granaghan [22] tested this hypothesis by asking participants to interpret
choropleth colormaps presented on white, gray, and black backgrounds
when there was no legend to specify the encoded mapping. Participants
inferred that darker colors represented larger quantities for all three
background conditions, but this effect was significantly reduced on the
black background. These results challenged the hypothesis that there
is a contrast-is-more bias, but also challenged the notion that there is
only a dark-is-more bias that is unaffected by the background. To this
point, Brewer [5] suggested that although higher values are usually
represented by darker colors, this mapping can be reversed on dark
backgrounds, as long as there is clear legend specifying the mapping.

The role of opacity variation? Roth et al. [34] proposed using
‘value-by-alpha’ maps, in which larger quantities map onto the highest
contrast colors (Figure 2A and B). Given McGranaghan’s [22] empiri-
cal evidence challenging the contrast-is-more bias, one might think that
the light-more encodings in value-by-alpha maps on dark backgrounds
contradict people’s inferred mappings. However, that might not be the
case if the key factor is actually apparent opacity given the background,
rather than color contrast (or distance in color space) from the back-
ground. If so, people may have an opaque-is-more bias, which to our
knowledge, has not yet been empirically tested.

A colormap should appear to vary in opacity when the color scale
is constructed by linearly interpolating between a reference color and
a perceptually distinct background color. In the resulting color scale,
the reference color is the highest contrast, or most distinct color from
the background. Parts of the image containing the reference color
appear as opaque foregrounds, and parts containing intermediate colors
appear as foregrounds with varying amount of opacity, overlaid on the
background. This is the basic principle for producing apparent variation
in opacity in graphics software by adjusting sliders that control opacity
or transparency [27].

In Roth et al.’s [34] value-by alpha maps shown in Figure 2A and
B, there are two reference colors, saturated red and saturated blue.
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Fig. 3. Illustrations of the conditions that produce apparent opacity
variation in value-by-alpha maps [34], in which the figural region is a
heterogeneous translucent surface (varying amounts of opacity) on a
homogenous ground (left) and traditional perceptual transparency, in
which the figural region is a homogeneous surface (constant amount of
opacity) on a heterogeneous ground (right)

These colors are interpolated with the background color, which pro-
duces intermediate colors that appear to vary in opacity. This can be
interpreted as a divergent color scale with maximally opaque endpoints
and a minimally opaque midpoint.

In contrast, the color scale used in McGranaghan’s [22] study (ap-
proximated in Figure 2C and D) curved in color space in a manner that
would impede apparent variation in opacity on black or white back-
grounds. That is, the lightest and darkest colors were low in saturation
and the mid-level lightness colors were high in saturation, which would
not occur if either endpoint was a reference color that varied in opacity.
This key difference could explain why light-more encoding on dark
backgrounds may match people’s inferred mappings for value-by-alpha
maps, but not for the colormaps tested in McGranaghan’s study. Mc-
Granaghan’s color scale is similar to ColorBrewer Blue [14], which we
studied in Experiment 1.

Figure 3 (left) illustrates conditions in the natural world that could
produce the kind of apparent variation in opacity that is relevant to
colormaps. Here, a surface with heterogeneous levels of opacity is
superimposed on a homogeneous background. A similar percept might
occur if discrete figural elements vary in density on a given background
(e.g., variation in density of chocolate powder on whipped cream or
density of snow on asphalt). The percept of opacity variation in these
displays depends on the way colors vary with respect to each other and
the background, regardless of their spatial arrangement. As Roth et
al. [34] discuss, apparent opacity variation used for colormaps should
not depend on colors appearing in specific spatial relations because
spatial arrangements of colored regions will vary depending on the
dataset.

Research in perception has begun to work on understanding apparent
variations in opacity on homogenous backgrounds [11], but these con-
ditions differ from classic demonstrations of perceived opacity (more
typically referred to as perceptual transparency) [3, 23, 40]. Figure 3
(right) illustrates the classic version, in which a homogenous surface of
a constant level of opacity appears to be superimposed on a heteroge-
neous background. Here, the percept of opacity variation depends on
spatial relations between the colored regions in the configuration (i.e.,
x-junctions).

2.2 Motivating Our Approach
We discuss three factors that motivated our approach for designing the
experiments in this study.

2.2.1 Measuring inferred mappings

Inferred mappings between perceptual features and concepts are typ-
ically measured in one of two ways. In the direct report method,
participants are asked to interpret the meaning of perceptual features in



visualizations that do not have legends or labels to specify the correct
answer [37, 48]. Without objectively correct answers, participants’ re-
ported interpretations reveal their inferred mappings. In the response
time method, participants are asked to accurately interpret the meaning
of perceptual features in visualizations that do have legends or labels to
specify the correct answer [20]. The response time method relies on the
assumptions that (a) it is easier to interpret visualizations in which the
encoding mapping matches the inferred mapping [25, 45, 46], and (b)
ease of interpretation can be operationalized as faster RTs. It follows
that we can learn about inferred mappings by evaluating which encoded
mappings facilitate faster RTs.

We chose the response time method, and compared RTs for col-
ormaps with legends that encoded different mappings. One reason for
this choice was our concern that if we explicitly asked participants to
interpret unlabeled colormaps, they might try to be consistent across tri-
als, even when we varied the background. Response time is an implicit
measure that should be less subject to this sort of participant demand
characteristic. We considered that McGranaghan [22] might have found
that the dark-is-more bias weakened, but did not reverse on the black
background because participants were trying to respond consistently
across background conditions. However, given the results of our present
study, we no longer have this concern about McGranaghan’s findings
(see General Discussion).

Another reason for choosing this method is that colormaps typically
(though not always [8]) have legends or labels that specify the encoded
mapping, and we sought to study colormaps under conditions in which
they are typically observed.

2.2.2 Using synthetic data to construct visualizations
Following prior literature [15, 17, 19], we used synthetic data to con-
struct the data visualizations used as test stimuli, enabling tight control
over the stimulus parameters. We also used a fictitious cover story,
explaining that the data were about alien animal sightings on Planet
Sparl, to prevent participants from having preconceived notions about
colors associated with the subject matter that ‘produced’ the data.

2.2.3 Specifying colors to produce colormaps
In laboratory experiments where the goal is to display colors that other
researchers can perfectly reproduce in their own labs, it is critical
to use careful monitor calibration procedures and specify colors in a
device-independent color space. Here, we aimed to study colormaps
that people use for real data visualizations, which are specified in
device-dependent coordinates (e.g. RGB), and are typically viewed
on personal computers or printed documents. Therefore, we chose to
use pre-made color scales from MATLAB and ColorBrewer [14] for
Experiment 1, and we generated color scales based on Roth et al.’s [34]
value-by-alpha maps in Experiment 2. When we converted the RGB
values of these color scales to CIELAB coordinates, we made standard
assumptions about the white point and monitor characteristics, using
MATLAB’s rgb2lab function. The approach we used here is typical in
the visualization literature, where the goal is to study visualizations that
are robust to variations in viewing conditions [12,43,44]. However, we
note that these are only approximations of CIELAB coordinates, and to
render true CIELAB coordinates it is necessary to carefully calibrate
the display screen and verify that color presentation is accurate using a
color measurement device.

3 EXPERIMENT 1
In Experiment 1, we evaluated how the background color influenced
inferred mappings when colormaps were constructed using various
standard color scales for visualization (Figure 1). In the experiment,
participants saw colormaps of alien animal sightings and reported
whether there were more sightings early or late in the day. We varied
the encoded mapping such that the legend specified that darker colors
meant greater amounts of sightings (‘dark-more’ encoding) on half of
the trials and lighter colors meant greater amounts of sightings (‘light-
more’ encoding) on the other half. By identifying which encoding
conditions resulted in faster RTs, we learned about people’s inferred
mappings.
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Fig. 4. Distribution used to sample values at each time point to generate
the data used to construct the colormap images (see text for details).

3.1 Methods
3.1.1 Participants
There were 30 participants (mean age = 22), who were undergraduates
or members of the community at Brown University. They received
either partial course credit or $10 for their participation. All had normal
color vision (screened using the HRR Pseudoisochromatic Plates [13])
and gave informed consent. The Brown University Institutional Review
Board approved the experimental protocol. Data from three additional
participants were excluded (not analyzed), due to experimenter error in
giving the instructions.

3.1.2 Design and displays
The display for each trial contained a colormap data visualization with
a legend specifying the encoded mapping (dark-more or light-more)
(Figure 1; left). The colormap visualization was an 8 × 8 grid (6.5 cm
× 6.5 cm) centered on the screen. The rows represented fictitious alien
animal species, the columns represented time of day, and the color of
each cell corresponded to frequency of sightings of each animal at each
time point. To help participants categorize the sightings as early vs.
late in the day, the left four columns were labeled “early” and the right
four columns were labeled “late.” A legend (5.5 cm tall × 0.5 cm wide)
was displayed 2.25 cm to the right of the colormap. The colormap
and legend appeared on either a white or black background (16.25 cm
× 16.25 cm) centered on the screen. The surrounding monitor color
was gray (RGB = [128, 128, 128]). The displays were presented on a
ProArt PA246Q monitor (1920 × 1200 resolution, 67 cm diagonal).

We generated the colormaps using four different color scales that var-
ied monotonically in lightness: MATLAB Autumn, Hot, and Gray, and
ColorBrewer Blue (Figure 1; right). We also included the MATLAB
Jet color scale, which does not vary monotonically in lightness—both
endpoints are dark. Given that our focus is on inferred mappings for
color scales that vary monotonically in lightness, we reserved discus-
sion of the Jet colormap for the Supplementary Material (Figure S4).
The colormap images and summary data from the experiments can be
found on our website (https://schlosslab.discovery.wisc.edu/resources).

The data used to generate the colormaps were sampled from an
arctangent curve with added normally-sampled noise (Figure 4). To
generate the data for each row of the colormap, we discretized the arc
tangent curve into eight bins, corresponding to the eight columns in
the colormap display. We centered the arctangent curve between the
fourth and fifth bins, such that half of the display was biased to have
larger values than the other half. We then perturbed each arctangent
value by sampling from a normal distribution with the mean equal to
the arctangent value and the standard deviation equal to 0.25. When
the values fell outside the [0,1] interval, we re-sampled until they were
all within the correct range. For half of the datasets, the arctangent
curve was oriented as shown in Figure 4, and for the other half, it was
left/right reversed. This enabled a left/right balance of the darker region



(i.e., half of the colormaps contained the darker region on the left and
the other half contained the darker region on the right).

There were 20 colormap conditions (5 color scales × 2 background
colors × 2 left/right balances). For each colormap condition, we created
20 different colormaps with unique datasets generated using the sam-
pling procedure described above. This enabled us to repeat the same
conditions 20 times without having participants see the same images,
which helped prevent them from memorizing the patterns. Participants
saw 400 unique colormap images.

During the experiment, participants saw each of these 400 colormap
images four times to accommodate four different legend conditions:
2 encoded lightness mappings (dark-more, light-more) × 2 legend
text positions (“greater”–high, “fewer”–high). This was achieved by
independently varying the orientation of the color scale in the legend
(dark–high or light–high), and the position of the text in the legend
(“greater”–high or “fewer”–high) (see Figure S1 in the Supplementary
Material). This design ensured that participants read the legend on every
trial and could not merely look at which color or label was at the top
or bottom of the legend to make a correct response. By showing each
colormap image four times, one for each legend condition, we ensured
that any differences in response times due to the legend conditions
were not due to variations in the underlying data used to construct the
colormaps. The combination of these 4 legend conditions x 400 unique
colormaps described above produced 1600 trials.

3.1.3 Procedure
Participants were told that they would see colormaps representing the
amount of animal sightings on a distant planet, Sparl. The x-axis would
represent time of day and the y-axis would represent type of animal.
Each map would have a legend, and sometimes the larger numbers
would be on the top of the legend and other times larger numbers would
be at the bottom (no numbers were explicitly shown, only the labels
“greater” and “fewer”). Their task would be to indicate whether there
were more animals early (left) or late (right) in the day by pressing
the left or right arrow key. They were asked to respond as quickly
as possible while maintaining their accuracy. They were told that a
tone would play each time they made an error, and that they would be
notified of their accuracy periodically.

To help participants account for why they would see many colormaps
of the same kind of data during the experiment, they were told that
each map showed data measured from different locations on the planet,
where different animals were visible different amounts at different
times of day. On the instructions screen, there were eight different
grayscale colormap data visualizations without legends so participants
could see how the datasets could vary.

Prior to beginning the experiment, there were 20 practice trials,
which were randomly selected from the set of all possible conditions.
Each trial began with a 500 ms blank gray screen, followed by an exper-
imental display containing the colormap and legend. This experimental
display remained on the screen until participants made their response.

During the experiment, the colormaps were presented using a
blocked randomized design: all 80 possible conditions (5 color scales
× 2 backgrounds × 2 left/right balances × 2 encoded lightness map-
pings × 2 legend text positioning) were displayed once in a random
order within each block before beginning the next block. Participants
were given short breaks after each set of 20 trials. We recorded RT and
accuracy.

3.2 Results and Discussion
To prepare the RTs for analysis, we first eliminated trials with errors
(mean accuracy was 97%; range of accuracy across participants was
91%-99%). We then calculated the mean and standard deviation across
all remaining trials for each participant, and pruned any trials that
were +/- 2 standard deviations from that participant’s mean. Next,
we calculated the mean across the remaining trials (out of 20) within
each of the 80 experiment conditions and averaged over the left/right
positioning of the darker region in the colormap. Given that legend text
position was not central to our research question, and we only varied it
to ensure participants read the legend on each trial, we present results

involving legend text position in the Supplementary Material (Figure
S2).

Figure 5A shows the mean RTs for dark-more and light-more en-
coded mappings, separated by color scale and background, but averaged
over legend text position. Overall, the RTs were faster for dark-more
encoding than light-more encoding and faster for the white background
than the black background. RTs also varied across color scales (fastest
for Autumn, slowest for Gray, with Hot and Blue in between).

These observations were supported by a repeated-measures ANOVA
with 2 encoded lightness mappings (dark-more, light-more) x 2 back-
grounds (white, black) x 4 color scales (Autumn, Hot, Blue, and Gray)
x 2 legend text positions (“greater”–high, “fewer”–high). There were
main effects of encoded lightness mapping (F(1,29) = 32.50, p <.001,
η2

p = .528), background (F(1,29) = 23.60, p <.001, η2
p = .449), and

color scale (F(3,87) = 20.49, p <.001, η2
p = .414). We compared RTs

for each pair of color scales using the Bonferroni correction (adjusted
alpha = .008). RTs were faster for Autumn than Hot, Blue, and Gray
(F(1,29) = 9.48, 20.23, 34.01 ps <.008, η2

p = .246, .411, .540, respec-
tively). RTs for Hot and Blue did not differ (F <1), but were faster for
Hot than Gray and Blue than Gray (F(1,29) = 18.06, 19.43 ps <.008,
η2

p = .384, .401).
Critical for our question of how inferred mappings depend on the

background, there was a 3-way interaction between encoded lightness
mapping, background, and color scale (F(3,87) = 13.94, p <.001, η2

p =
.325). As evident in Figure 5A, participants showed a dark-is-more bias
for the Autumn, Hot, and Blue color scales, although it was reduced for
the Blue color scale on the black background. The pattern was different
for the Gray color scale, with faster RTs for dark-more encoding on the
white background but no difference on the black background.

These observations were supported by ANOVAs within each color
scale (2 encoded lightness mappings × 2 backgrounds). For Autumn,
Hot, and Blue, there were main effects of encoded lightness mapping,
with dark-more encoding resulting in faster RTs (F(1,29) = 28.19, 41.62,
17.85, ps <.001, η2

p = .493, .589, .381, respectively). This effect did
not interact with the background for Autumn or Hot (Fs <1), but did
interact with the background for Blue (F(1,29) = 7.58, p = .010, η2

p =
.207). Despite this interaction, RTs for Blue were faster for dark-more
encoding on both white backgrounds (F(1,29) = 19.74, p <.001, η2

p
= .405) and black backgrounds (F(1,29) = 9.72, p = .004, η2

p = .251).
For Gray, RTs were overall faster for dark-more encoding (F(1,29) =
9.82, p = .004,η2

p = .253), but that was driven by the difference within
the white background condition (F(1,29) = 30.98, p <.001, η2

p = .516).
Encoded lightness mapping interacted with background (F(1,29) =
21.05, p <.001, η2

p = .421), with faster RTs for dark-more encoding
on the white background as stated above, but a trend toward faster RTs
for light-more encoding on the black background (F(1,29) = 3.31, p =
.079, η2

p = .102).
Why did the background have different effects depending on the

color scale? A possibility is that the color scales differed in their degree
of apparent opacity variation. By viewing the colormaps along the
x-axis in Figure 5A, it may be observed that the Gray colormaps appear
to vary in opacity, the Blue colormaps somewhat appear to vary in
opacity, and the Autumn and Hot colormaps do not appear to vary in
opacity. As discussed in Section 2.1.3, apparent opacity variation arises
when a reference color is linearly interpolated with the background
color. This suggests that we can estimate the degree of apparent opacity
variation based on the degree to which the colors in the color scale
deviate from the linear interpolation.

Figure 5B-C illustrates the differences in the trajectories of each
color scale (squares and thick gray line) and the linear interpolation
between the color scale’s highest contrast color with the white back-
ground (Figure 5B) and black background (Figure 5C) (circles and thin
dashed line). Here, the color scales are plotted on the L* b* plane in
CIELAB space. A version of this figure containing the L* a* plane of
CIELAB space can be found in the Supplementary Material (Figure
S5). Notice that the Gray color scale falls along this interpolated line,
Blue follows a curve that deviates slightly from the line, and Autumn
and Hot deviate substantially from the line (the deviation for Autumn
on the white background is more apparent on the L* a* plane).
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Fig. 5. (A) Mean RTs for light-more encoding (light bars) and dark-more encoding (dark bars), separated by background color (x-axis) and color scale
(separate plots). The icons along x-axis represent example colormaps with each condition (note: the darker region is on the right in these examples,
but the dark region was left/right balanced in the experiment). Error bars represent +/- standard errors of the means. (B) Plots of each color scale
(squares) and interpolations between the highest contrast color and the white background (circles) in CIELAB space. (C) The corresponding plots
from B for the black background. In B and C, the number above each plot is the Opacity Variation Index (see text for details).

We quantified these deviations in what we call an Opacity Variation
Index defined as, log(z+1), where z is the root mean squared error
(RMS) between each point in the color scale and the line between the
highest-contrast color and the background. We used log RMS because
we reasoned that small deviations from the line would strongly affect
apparent variation in opacity, but the effect of further increasing the
deviation should level off as apparent variation in opacity is broken.
The Opacity Variation Index for each color scale on each background
is displayed above each plot in Figures 5B and 5C. Smaller Opacity
Variation Index values—less deviance from the line—indicate greater
perceptual evidence for opacity variation.

We examined whether the Opacity Variation Index could account for
the relative difference in RTs for dark-more and light-more encodings
across color scales. Figure 6 illustrates the mean RT difference (dark-
more encoding – light-more encoding) for each color scale as a function
of the Opacity Variation Index for the white and black backgrounds.
Generally, the points are below zero, which reflects the dark-is-more
bias reported above. However, if the only effect present was the dark-
is-more bias, the points for each color scale would have the same
shift below zero. Instead, the points fall along a line predicted by
the Opacity Variation Index (white background: r = 0.969, p = .031;
black background: r = -.999, p = .001). On the white background, RTs
were especially faster for dark-more encoding when there was greater
evidence for opacity variation (smaller Opacity Variation Indexes),
which can be explained as cooperating dark-is-more and opaque-is-

more biases. The opposite was true for the black background, which can
be explained as conflicting dark-is-more and opaque-is-more biases.

The Gray color scale was an anomaly in this experiment as the only
condition in which RTs were not faster for dark-more encodings than
light-more encodings when the background was black. However, we
predicted that it should be possible to replicate and extend this effect
for other color scales that follow linear interpolations between the
highest contrast color and the background. We test this prediction in
Experiment 2.

In summary, Experiment 1 demonstrated that when color scales did
not appear to vary in opacity, inferred mappings were dominated by a
dark-is-more bias, regardless of the background. However, as evidence
for opacity variation increased, inferred mappings became increasingly
more influenced by an opaque-is-more bias. When the background
was white, the opaque-is-more bias reinforced the dark-is-more bias
(i.e., faster RTs for dark-more encoding). When the background was
black, the opaque-is-more bias contradicted, and thereby dampened the
dark-is-more bias.

4 EXPERIMENT 2

Experiment 2 directly tested our hypothesis that there is an opaque-is-
more bias. Participants saw colormaps that were generated from three
different color scales, which were linear interpolations between black–
white (analogous to Gray in Experiment 1), black–blue, and blue–white.
These colormaps were presented on three possible background colors:
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Fig. 6. Difference in mean RTs (dark-more encoding – light-more encod-
ing) from Figure 5 for each color scale, plotted as a function of the log
Opacity Variation Index for the white (left) and black (right) backgrounds.
Negative differences scores indicate that RTs were faster for dark-more
encoding, consistent with a dark-is-more bias, whereas positive differ-
ence scores indicate that RTs were faster for light-more encoding. The
slopes of the best-fit regression lines (black lines) are consistent with
an opaque-is-more bias that operates in addition to the dark-is-more
bias. Greater evidence for variations in opacity results in relatively faster
RTs for dark-more encoding on white backgrounds (where dark is more
opaque), and faster RTs for light-more encoding on black backgrounds
(where light is more opaque).

black, blue, and white. Therefore, for each color scale, there were two
backgrounds on which the color scales appeared to vary in opacity,
one dark and one light, and one color scale in which the color did not
appear to vary in opacity (see Figure 7).

4.1 Methods
4.1.1 Participants
There were 36 participants (mean age = 18.9), who were undergraduates
at the University of Wisconsin–Madison and received partial course
credit for their participation. All had normal color vision (screened
using the HRR Pseudoisochromatic Plates [13]) and gave informed
consent. The University of Wisconsin–Madison Institutional Review
Board approved the experimental protocol.

Unlike Experiment 1, where all participants were highly accurate
(range from 91%-99%), we noticed early on that some participants in
Experiment 2 were far less accurate (75%-77%). To approximate the
accuracy levels from Experiment 1, we set a criterion for Experiment 2
that to be included in further analysis, participants had to have an overall
accuracy of greater than 90%. This criterion excluded 6 participants,
and our final sample size was n = 30 to match Experiment 1.

4.1.2 Design and displays
The design and displays in Experiment 2 were similar to Experiment
1, except we tested three different color scales (black–white, black–
blue, and blue–white) presented on three possible backgrounds (black,
white, and blue). The coordinates for blue were the same as in Roth et
al.’s blue value-by-alpha map [34], derived from ColorBrewer.org [14]
[RGB = (56, 126, 185)]. The coordinates for black were [RGB = (0,
0, 0)] and for white were [RGB = (255, 255, 255)]. We created each
color scale by linearly interpolating in RGB color space between the
two endpoints, which is analogous to varying the alpha level of the a
reference color on a given background (see Section 2.1.3).

The full design included 72 experimental conditions, from the or-
thogonal combinations of 3 color scales × 3 background colors × 2
encoded lightness mappings × 2 legend text positions × 2 left/right
balances. As in Experiment 1, there were 20 replications of each condi-
tion, with different underlying datasets used to generate the colormaps
in each replication, resulting in 1440 trials.

4.1.3 Procedure
The procedure was the same as in Experiment 1, except there were 72
trials per block in the blocked randomized design.

4.2 Results and Discussion
As in Experiment 1, we prepared the RTs for analysis by first elimi-
nating trials with errors (mean accuracy was 97%; range of accuracy
across participants was 92%-99% after excluding participants with
mean accuracy that was not greater than 90%; see Participants section).
We then calculated the mean and standard deviation across all remain-
ing trials for each participant, and pruned any trials that were +/- 2
standard deviations from that participant’s mean. Next, we calculated
the mean across the remaining trials (out of 20) within each of the 72
experiment conditions and averaged over the left/right positioning of
the darker region in the colormap. The results regarding legend text
position are in the Supplementary Material (Figure S3).

Figure 8 shows the mean RTs for dark-more and light-more encoded
lightness mapping, separated by color scale and background and aver-
aged over legend text position. For each color scale, the backgrounds
are ordered along the x-axis such that the two pairs of bars to the left
of the vertical divider are for color scales that should appear to vary
in opacity—dark is more opaque on the light background (left) and
light is more opaque on the dark background (right). These conditions
are analogous to Gray in Experiment 1. Both the dark-is-more and
opaque-is-more biases should be in effect for these conditions, so we
expected faster RTs for dark-more encoded mappings on light back-
ground and equal or faster RTs for light-more encoded mappings on
dark backgrounds. The pair of bars to the right of the vertical divider
is for color scales that should not appear to vary in opacity. Only the
dark-is-more bias should be in effect, so we expected faster RTs for
dark-more encoded mappings.

RTs were overall faster for dark-more encoding than light-more en-
coding, but this effect varied depending on the background. This obser-
vation was supported by a repeated measures ANOVA with 2 encoded
lightness mappings (dark-more, light-more) × 3 background/color scale
relations (opacity variation light–background, opacity variation dark–
background, no opacity variation) × 2 legend text positions (“greater”–
high, “fewer”–high) × 3 color scales (black–white, black–blue, white–
blue). There was a main effect of lightness mapping (F(1,29) = 6.43, p
= .017, η2

p = .182) and a lightness mapping × background interaction
(F(2,58) = 50.47, p <.001, η2

p = .635). There was no 3-way interaction
between lightness mapping, background, and color scale (F(4,116) =
1.73, p = .149, η2

p = .056), which suggests that the general pattern in the
lightness mapping × background interaction was comparable across
color scales. Therefore, for further tests to understand the lightness
mapping × background interaction, we averaged over color scale.

A B

-100 100
0

100

L*

b*

Fig. 7. (A) CIELAB coordinates of the three color scales and three back-
grounds tested in Experiment 2. The color scales are interpolations
between the white and black, white and blue, and black and blue back-
ground colors. (B) Example colormaps for generated from the three color
scales and 3 backgrounds in A. Here, the same colormap is presented
on each background for direct comparison, but in the experiment partic-
ipants saw different colormaps generated from the same color scales
on different backgrounds. Each color scale appears on a background
that matches its lightest endpoint (darker should appear more opaque),
darkest endpoint (lighter should appear more opaque), or neither end
point (positive diagonal; should not appear to vary in opacity).
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For color scales that appeared to vary in opacity on light backgrounds
(left pairs of bars in Figure 8), RTs were faster for dark-more encoding
(F(1,29) = 41.13, p <.001, η2

p = .586). For color scales that appeared
to vary in opacity on dark backgrounds (center pairs of bars in Figure
8), RTs were faster for light-more encoding (F(1,29) = 21.25, p <.001,
η2

p = .423). For colors that did not appear to vary in opacity given
their background (right pairs of bars in Figure 8), RTs were faster for
dark-more encoding (F(1,29) = 15.00, p = .001, η2

p = .341).
Upon inspecting the data in Figure 8, there was one result that ap-

peared to violate our predictions described above. There seemed to
be no dark-is-more bias for the blue–white color scale on the black
background, even though the blue–white color scale should not appear
to vary in opacity on the black background. We believe this result
may be due to carryover effects from the other trials with the black
background. On those other trials, the color scales did appear to vary
in opacity, with lighter colors appearing more opaque. This led to com-
peting opaque-is-more and dark-is-more biases, which mitigated the
dark-is-more bias on the black background. We suspect this suppressed
dark-is-more bias on black backgrounds carried over to the blue–white
color scale, even though it did not appear to vary in opacity. Further
investigation is necessary to understand how such contextual influences
might bias inferred mappings.

In summary, the results of Experiment 2 supported the existence
of an opaque is more bias. When color scales appeared to vary in
opacity, RTs were faster for dark-more encoding on light backgrounds
and light-more encoding on dark backgrounds. When color scales did
not appear to vary in opacity, RTs were generally faster for dark-more
encoding, consistent with the dark-is-more bias.

5 GENERAL DISCUSSION

The goal of this study was to understand the conditions under which
people’s inferred color-quantity mappings for colormap data visualiza-
tions were influenced by the background color.

The existing literature paints a confusing, and sometimes conflicting,
picture regarding the role of the background. For example, Cuff [9]
provided evidence for a dark-is-more bias without considering the
background color. McGranaghan [22] suggested there is a contrast-
is-more bias, but when he varied the background color, the dark-is-
more biased persisted, though was reduced on dark backgrounds. This
result challenged the pure form of the contrast-is-more bias, but also
suggested there is more to inferred color-quantity mappings than just a
dark-is-more bias. Roth et al. [34] proposed the use of value-by-alpha
maps, which encode larger quantities in higher contrast, more opaque
colors. This includes encoding larger quantities in lighter colors on dark
backgrounds. Based on McGranaghan’s findings one might believe this
light-more encoding on dark backgrounds would contradict people’s
inferred mappings. Despite this, Roth et al.’s illustrations encoding
larger quantities in lighter, more opaque colors on dark backgrounds
appear compelling, though this was not empirically tested.

The present results clarify this confusion. The degree to which the
background color influenced people’s inferred color-quantity mappings
depended on apparent variation in opacity. When color scales did not
appear to vary in opacity, inferred mappings were dominated by a
dark-is-more bias. As apparent opacity variation increased, inferred
mappings became more influenced by an opaque-is-more bias. These
results are relevant to interpreting choropleth maps typically used in
cartography [5,22,34], as well as heat maps commonly used in a variety
of disciplines including genetics [2] and neuroscience [16].

The results from Experiment 1 explain why McGranaghan [22]
found that the dark-is-more bias was reduced, but not reversed, on a
black background. Similar to the ColorBrewer Blue scale tested in
our study, McGranaghan’s color scale only weakly appeared to vary in
opacity (see Figure 2) so the opaque-is-more bias did not supersede the
dark-is-more bias. We were initially concerned that McGranaghan’s
results were influenced by participants’ trying to maintain consistent
responses on different backgrounds. However, we essentially replicated
his result with a different, more implicit measure, which mitigated this
concern.

The results from Experiment 2 provide behavioral evidence support-
ing the effectiveness of the value-by-alpha maps that were previously
illustrated by Roth et al. [34] but not empirically tested. In general,
when there was strong evidence that the color scales varied in opacity,
participants inferred that higher-contrast/more-opaque colors mapped
to larger quantities.

From a practical perspective, our results suggest that it is easiest for
people to interpret colormaps that are designed such that the dark-is-
more and opaque-is-more bias result in congruent inferred mappings.
This occurs when darker, more opaque colors map to larger quantities
on a light background. However, there might be cases in which de-
signers want to present the same colormap on different backgrounds
(e.g., slides with a white or black background). In such cases, our
results suggest using dark-more encoding and avoiding colormaps that
appear to vary in opacity on any background. Colormaps that curve
substantially through color space, such as Hot, should not appear to
vary in opacity on any background because no background color would
enable linear interpolation between all colors in the color scale and the
background color.

5.1 Open questions
We now consider open questions to be addressed in future research.

5.1.1 Explanation for dark-is-more and opaque-is-more biases
A fundamental question is why there are dark-is-more and opaque-is-
more biases. It has been suggested that the dark-is-more bias arises
from changes in appearance as more ink is added to a page [10] and that
contrast effects might arise from percepts of varying density of dark ele-
ments on light backgrounds or light elements on dark backgrounds [22].
The relation between opacity and quantity can be observed in the way



pigmented chemicals appear to vary as their concentration increases in
a clear solution (Beer-Lambert Law [31]). It is also possible that these
biases are related to exposure to conventions in data visualization and
map making, especially given that dark-is-more mappings became a
standard for visualizing statistics in the early 1900s [26].

These exposure accounts are consistent with the Color Inference
Framework [36], which proposes that people continually form color-
concept associations based on their experiences of co-occurrences
between colors and concepts in the world. To interpret the meanings of
colors in color-coding systems, people draw on these associations to
infer color-concept mappings in the particular context.

To evaluate whether these biases are learned from visualization con-
ventions, as opposed to experiences of how colors vary as element
density varies in the natural world, it would be helpful to study a
population that has not been exposed to abstract representations of
data. It would also be interesting to study experts in fields that con-
ventionally use light-more encodings in their data visualizations, such
as neuroscientists [8] and radiologists [18]. It is possible they would
infer light-more mappings for visualizations in their area of expertise,
but would infer dark-more mappings for visualizations outside of that
domain. Alternatively, they might have learned light-more inferred
mappings that generalize across domains. If so, they might not show
the dark-is-more bias observed in the present study, and dark-more en-
codings would contract their inferred mappings, making visualizations
harder for them to interpret.

5.1.2 Opacity Variation Index

We defined the Opacity Variation Index for a given color scale and
background as the deviation between each point in the color scale and
the line between the highest-contrast endpoint of the color scale and the
background. This is a simple way to operationalize apparent variation
in opacity, but there are conditions under which it could be problematic.
For the present color scales and background, it was straightforward
to specify which endpoint contrasted most with the background (i.e.,
furthest distance in CIELAB space). However, it would be possible to
have a color scale and background for which both endpoints equally
contrasted with the background. Understanding how best to quantify
apparent variation in opacity is an open question.

Further, we defined the Opacity Variation Index with respect to
metric properties in CIELAB color space, but empirical experiments
are necessary to test whether this, or any other metric, corresponds
to people’s perceived variation in opacity. If it turns out that people
are not sensitive to these kinds of metrics, but the metrics still predict
inferred mappings for visualizations, such information would still be a
useful construct for anticipating conditions under which interpretations
of colormaps are influenced by the background.

5.1.3 Spatial configuration

Another question concerns how inferred mappings are influenced by
the spatial organization of the colored regions. In this study we used
grids in which one side was biased to be light and the other side dark,
but the spatial arrangement of the colors was otherwise random. Our
goal was to avoid configural cues that indicated which region repre-
sent ‘more.’ This kind of spatial layout is similar to those found in
colormaps visualizations of correlation matrices and gene expression
co-occurrences.

However, colormaps are often used to visualize data that produce
more concentric ‘hot spot’ configurations (e.g., EEG scalp topographies,
fMRI bold signal images, and weather maps). Schott [38] suggested in
that in such cases, the concentric layout might be a cue to the encoded
mappings—the center of the configuration represents ‘more.’ He further
suggested that in such cases, people’s interpretations of colormaps may
be dominated by the spatial distribution of colors rather than the colors
themselves. It is unknown whether the dark-is-more and opaque-is-
more biases observed in the present study would influence inferred
mappings for such ‘hot spot’ visualizations.

5.1.4 Semantic context

In the present study, we explicitly used fictitious data about alien an-
imals to prevent participants from using prior associations between
colors and the subject matter (i.e., alien animals) to inform their judg-
ments. However, people do have strong color-concept associations for
particular objects, which influence their inferences about the meanings
of colors in information visualizations [20, 36, 37]. Based on this logic,
Samsel et al. [35] created color scales with intuitive color coding for
environmental sciences (e.g., blue color scales for water, green color
scales for vegetation, and brown/yellow/red color scales for earth).

This point raises the question of whether the dark-is-more and
opaque-is-more biases would hold if they directly conflict with color-
concept association for the subject matter. For example, if a data visual-
ization illustrates amount of snow accumulation or sunshine, which are
associated with light colors, would people infer light-more mappings?
If so, would that only hold when the lighter color is associated with the
concept (e.g., white for snow, and white/yellow for sunshine), or would
it to generalize to any light colors?

In Cuff’s [9] study on temperature maps he reported that the dark-is-
more bias prevailed over color associations with temperature. However,
to fully address these questions, it would be necessary to (a) obtain
judgments about color-concept associations for the subject matter to
ensure that the researchers know what those associations are, and (b)
test a variety of subject matter (not just temperature).

5.1.5 Dark-is-more beyond colormaps

The present work contributes to a body of evidence that there is a dark-
is-more bias when interpreting colormap data visualizations. However,
when participants were asked to map different lightnesses to different
mouse sizes, Smith and Sera [41] reported that young children have a
dark-is-more bias but adults have no systematic lightness-magnitude
mappings. Therefore, the question remains of whether the dark-is-more
bias in adults is confined to colormaps, or might generalize to some
other aspects of cognition.

6 CONCLUSION

We investigated how visual features in colormap data visualization in-
fluence people’s inferred color-quantity mappings. We report evidence
supporting two distinct types of inferred mappings: dark-is-more and
opaque-is-more biases. The dark-is-more bias was established in the
literature long ago, but when and how inferred mappings are modu-
lated by the background color has remained mysterious. We found that
the role of the background increases as apparent variation in opacity
increases. When colormaps do not appear to vary in opacity, inferred
mappings are dominated by the dark-is-more bias and are unaffected by
the background. When there is strong apparent variation in opacity, an
opaque-is-more bias emerges and can limit, or even override, the dark-
is-more bias when colormaps are presented on dark backgrounds. Our
results suggest that to understand how people interpret visualizations,
it is necessary to understand both lower-level perceptual processing
(e.g., conditions that support apparent variations in opacity), and how
those percepts map onto cognitive constructs that are represented in
visualizations.
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