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Estimating Color-Concept Associations from Image Statistics
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Figure 1. We constructed models that estimate human color-concept associations using color distributions extracted from images of
relevant concepts. We compared methods for extracting color distributions by defining different kinds of color tolerance regions (white
outlines) around each target color (regularly spaced large dots) in CIELAB space. Subplots show a planar view of CIELAB space at
L* = 50, with color tolerance regions defined as balls (left column; radius ∆r ), cylindrical sectors (middle columns; radius ∆r and hue
angle ∆h), and category boundaries around each target color (right column; Red, Orange, Yellow, Green, Blue, Purple, Pink, Brown,
Gray; white and black not shown). Each target color is counted as “present” in the image each time any color in its tolerance region is
observed. This has a smoothing effect, which enables the inclusion of colors that are not present in the image but similar to colors that
are. A model that includes two sector features and a category feature best approximated human color-concept associations for unseen
concepts and images (see text for details).

Abstract—To interpret the meanings of colors in visualizations of categorical information, people must determine how distinct colors
correspond to different concepts. This process is easier when assignments between colors and concepts in visualizations match
people’s expectations, making color palettes semantically interpretable. Efforts have been underway to optimize color palette design
for semantic interpretablity, but this requires having good estimates of human color-concept associations. Obtaining these data from
humans is costly, which motivates the need for automated methods. We developed and evaluated a new method for automatically
estimating color-concept associations in a way that strongly correlates with human ratings. Building on prior studies using Google
Images, our approach operates directly on Google Image search results without the need for humans in the loop. Specifically, we
evaluated several methods for extracting raw pixel content of the images in order to best estimate color-concept associations obtained
from human ratings. The most effective method extracted colors using a combination of cylindrical sectors and color categories in color
space. We demonstrate that our approach can accurately estimate average human color-concept associations for different fruits using
only a small set of images. The approach also generalizes moderately well to more complicated recycling-related concepts of objects
that can appear in any color.

Index Terms—Visual Reasoning, Visual Communication, Visual Encoding, Color Perception, Color Cognition, Color Categories

1 INTRODUCTION

In visualizations of categorical information (e.g., graphs, maps, and
diagrams), designers encode categories using visual properties (e.g.,
colors, sizes, shapes, and textures) [6]. Color is especially useful for
encoding categories for two main reasons. First, cognitive represen-
tations of color have strong categorical structure [5, 38, 51], which
naturally maps to categories of data [8, 15]. Second, people have
rich semantic associations with colors called color-concept associa-
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tions (e.g., a particular red associated with strawberries, roses, and
anger) [17, 30, 33], which they use to interpret meanings of colors in
visualizations [22, 23, 40–42]. Indeed, it is easier to interpret visualiza-
tions if semantic encoding between colors and concepts (referred to as
color-concept assignments) match people’s expectations derived from
their color-concept associations [23, 40, 41].

Recent research has investigated how to optimize color palette design
to produce color-concept assignments that are easy to interpret [23, 41,
42]. Methods typically involve quantifying associations between each
color and concept of interest, and then using those data to calculate
optimal color-concept assignments for the visualization [4, 23, 41, 42].
It may seem that the best approach would be to assign concepts to
their most strongly associated colors, but that is not always the case.
Sometimes, it is better to assign concepts to weakly associated colors to
avoid confusions that can arise when multiple concepts are associated
with similar colors (see Section 2.2) [41]. Thus, to leverage these
optimization methods for visualization design, it is necessary to have an
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effective and efficient way to quantify human color-concept associations
over a large range of colors. Only knowing the top, or even the top few
strongest associated colors with each concept may provide insufficient
data for optimal assignment.

One way to quantify human color-concept associations is with hu-
man judgments, but collecting such data requires time and effort. A
more efficient alternative is to automatically estimate color-concept
associations using image or language databases. Previous studies laid
important groundwork for how to do so as part of end-to-end methods
for palette design [14, 18, 24, 25, 42]. However, without directly com-
paring estimated color-concept associations to human judgments, it is
unclear how well they match. Further, questions remain about how best
to extract information from these databases to match human judgments.

The goal of our study was to understand how to effectively and
efficiently estimate color-concept associations that match human judg-
ments. These estimates can serve as input for palette design, both
for creating visualizations and for creating stimuli to use for visual
reasoning studies on how people interpret visualizations.
Contributions. Our main contribution is a new method for automat-
ically estimating color-concept associations in a way that strongly
correlates with human ratings. Our method operates directly on Google
Image search results, without the need for humans in the loop. Creating
an accurate model requires fine-tuning the way in which color informa-
tion is extracted from images. We found that color extraction was most
effective when it used features aligned with perceptual dimensions in
color space and cognitive representations of color categories.

To test the different extraction methods, we used a systematic ap-
proach starting with simple geometry in color space and building toward
methods more grounded in color perception and cognition. We used
cross-validation with a set of human ratings to train and validate the
model. Once generated, the model can be used to estimate associa-
tions for concepts and colors not seen in the training process without
requiring additional human data. We demonstrated the effectiveness
of this process by training the model using human association ratings
between 12 fruit concepts and 58 colors, and testing it on a dataset of 6
recycling-themed concepts and 37 different colors.

2 RELATED WORK

Several factors are relevant when designing color palettes for visual-
izing categorical information. First and foremost, colors that repre-
sent different categories must appear different; perceptually discrim-
inable [8, 15, 44, 45]. Other considerations include selecting colors that
have distinct names [16], are aesthetically preferable [12], or evoke par-
ticular emotions [4]. Most relevant to the present work, it is desirable
to select semantically interpretable color palettes to help people inter-
pret the meanings of colors in visualizations [23, 41, 42]. This can be
achieved by selecting “semantically resonant” colors, which are colors
that evoke particular concepts [23]. It can also be achieved when only
a subset of the colors are semantically resonant if conditions support
people’s ability to infer the other assignments [41], see Section 2.2.

2.1 Creating semantically interpretable color palettes
Many approaches exist for creating semantically interpretable color
palettes [23, 41, 42], but they generally involve the same two stages:

1. Quantifying color-concept associations.
2. Assigning colors to concepts in visualizations, using the color-

concept associations from stage 1.
Assigning colors to concepts in visualizations (stage 2) relies on input
from color-concept associations (stage 1), which suggests assignments
are only as good as the association data used to generate them. Color-
concept association data are good when they match human judgments.

2.1.1 Quantifying color-concept associations
A direct way to quantify human color-concept associations is with hu-
mans judgments. Methods include having participants rate association
strengths between colors and concepts [30, 41], select colors that best
fit concepts [9,31,52], or name concepts associated with colors [29,33].
However, collecting these data is time- and resource-intensive.

Isolated color set

Baseline color set

paper plastic glass metal compost trash

Balanced color set

Adapted from Schloss et al. (2018)
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Algorithm Palette
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Standard Palette

Adapted from Lin et al. (2013)
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Figure 2. Examples of designs that use color-concept associations
to automatically assign colors to concepts. In (A), data visualizations
showed fictitious fruit sales and participants interpreted the colors using
legends [23]. In (B), visualizations showed recycling bins and participants
interpreted colors without legends or labels [41].

An alternative approach is to estimate human color-concept asso-
ciations from large databases, such as tagged images [4, 23–25, 42],
color naming data sets [14,24, 42], semantic networks [14], and natural
language corpora [42]. Each type of database enables linking colors
with concepts but has strengths and weaknesses, so automated methods
often combine information from multiple databases [14, 24, 25, 42].

Extracting colors from tagged images (e.g., Flickr, Google Images)
provides detailed color information for a given concept because of
the large range of colors within images [4, 23–25, 42]. Methods must
specify how to represent colors from images and what parts of the
image to include. Linder et al. [24, 25] obtained a color histogram with
bin sizes of 15× 15× 15 units in CIELAB space from all pixels in
an image. Similarly, Lin et al. [23] calculated color histograms using
smaller 5×5×5 bins, together with heuristics to smooth the histogram
and remove black or white backgrounds. In a different approach, Setlur
and Stone [42] and Bartram et al. [4] used clustering algorithms to
determine dominant colors in images. Clustering can be effective for
finding the top colors in an image, but does not provide information on
the full color range.

Image extraction methods must also specify how to query image
databases to obtain images for each concept. Lin et al. [23] used queries
of each concept word alone (e.g., “apple”) and queries with “clipart”
appended to the concept word (e.g.,“apple clipart”). They reasoned
that for some concepts, humanmade illustrations would better capture
people’s associations (e.g., associations between “money” and green
might be missed from photographs of US dollars, which are more
grayish than green). Setlur and Stone [42] also used “clipart”, and
filtered by color using Google’s dominant color filter.

Language-based databases provide a different approach, linking col-
ors and concepts through naming databases (XKCD color survey [29]
used in [14, 25, 42]), concept networks (ConceptNet [26, 43] used
in [14]), or linguistic corpora (Google Ngram viewer used in [42]).
Naming databases provide information about color-concept pairs that
were spontaneously named by participants. These data can be sparse
if they they lack information about concepts that are moderately asso-
ciated with a color but not strongly associated enough to elicit a color
name. Concept networks and linguistic corpora link concepts to color
words (not coordinates in a color space), so these methods tend to be
used in conjunction with naming [14] and image [42] databases to link
color words to color coordinates for use in visualizations.
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Figure 3. Illustration of our pipeline for automatically extracting color distributions from images. The bottom flow (concepts to color ratings to human
associations) describes the slow yet reliable direct approach using human experiments to determine ground-truth associations. The top flow involves
querying Google Images, extracting colors using a variety of different methods (features), then weighting those features appropriately to obtain
estimated associations. Deciding which features to use and how to weight them is learned from human association data using sparse regression and
cross-validation. Once the model is trained, color-concept associations can be quickly estimated for new concepts without additional human data.

2.1.2 Assigning colors to concepts in visualizations

Once color-concept associations are quantified, they can be used to
compute color-concept assignments for visualizations. Various methods
have been explored for computing assignments. Lin et al. [23] com-
puted affinity scores for each color-concept pair using an entropy-based
metric, and then solved the assignment problem (a linear program) to
find the color-concept assignment that maximized the sum of affin-
ity scores. They found that participants were better at interpreting
charts of fictitious fruit sales with color palettes generated from their
algorithm, compared with the Tableau 10 standard order (Fig. 2A).
In another approach, Setlur and Stone [42] applied k-means cluster-
ing to quantize input colors into visually discriminable clusters using
CIELAB Euclidean distance, and iteratively reassigned colors until all
color-concept conflicts were resolved.

In a third approach, Schloss et al. [41] solved an assignment problem
similar to [23], except they computed merit functions (affinity scores)
differently. They compared three merit functions: (1) isolated, assign-
ing each concept to its most associated color while avoiding conflicts,
(2) balanced, maximizing association strength while minimizing con-
fusability, and (3) baseline, maximizing confusability (Fig. 2B). They
found that participants were able to accurately interpret color meanings
for unlabeled recycling bins using the balanced color set, were less
accurate for bins using the isolated color set, and were at chance for
bins using the baseline color set.

2.2 Interpreting visualizations of categorical information,
and implications for palette design

When people interpret the meanings of colors in visualizations, they
use a process called assignment inference [41]. In assignment infer-
ence, people infer assignments between colors and concepts that would
optimize the association strengths over all paired colors and concepts.
Sometimes, that means inferring that concepts are assigned to their
strongest associated color (e.g., paper to white in Fig. 2B). But, other
times it means inferring that concepts are assigned to weaker associates,
even when there are stronger associates in the visualization (e.g., plastic
to red and glass to blue-green, even though both concepts are more
strongly associated with white) [41]. This implies that people can inter-
pret meanings of colors that are not semantically resonant (i.e., strongly
associated with the concepts they represent) if there is sufficient context
to solve the assignment problem (though what constitutes “sufficient
context” is the subject of ongoing research).

People’s capacity for assignment inference suggests that for any set
of concepts, it is possible to construct many semantically interpretable
color palettes. This flexibility will enable designers to navigate trade-
offs between semantics and other design objectives—discriminabilty,

nameablity, aesthetics, and emotional connotation, which are some-
times conflicting [4, 12]. To create palette designs that account for
these objectives, it is necessary to have good estimates of human color-
concept associations over a broad range of colors.

3 GENERAL METHOD

In this section, we describe our approach to training and testing our
algorithm for automatically estimating human color-concept associ-
ations (illustrated in Fig. 3). We began by collecting color-concept
association data from human participants to use as ground truth. Then,
we used Google Images to query each of the concepts and retrieve
relevant images. We tested over 180 different methods (features) across
Experiments 1A-C for extracting color distributions from images. We
selected features (how many and which ones to use) by applying sparse
regression with cross-validation to avoid over-fitting and produce es-
timates that generalized well. Model weights for each feature were
chosen by ordinary linear regression.

For training and testing in Experiments 1 and 2, we used a set of 58
colors uniformly sampled in CIELAB color space (∆E = 25), which
we call the UW-58 colors (see Supplementary Material Section S.1 and
Supplementary Table S.1). The concepts were 12 fruits: avocado, blue-
berry, cantaloupe, grapefruit, honeydew, lemon, lime, mango, orange,
raspberry, strawberry, and watermelon. We chose fruits, as in prior
work [23,42], because fruits have characteristic, directly observable col-
ors (high color diagnosticity [46]). We sought to establish our method
for simple cases like fruit where we believed there was sufficient color
information within images to estimate human color-concept associa-
tions. In future work it will be possible to identify edge cases where the
method is less effective and address those limitations. In Experiment 3,
we tested how our trained algorithm generalized to a different set of
colors and concepts using color-concept association ratings for recy-
cling concepts from [41]. In the remainder of this section, we describe
our methods in detail.

3.1 Human ratings of color-concept associations

To obtain ground truth for training and testing our models, we had
participants rate association strengths between each of the UW-58
colors and 12 fruits.

Participants. We tested 55 undergraduates (mean age = 18.52, 31 fe-
males, 24 males) at UW–Madison. Data was missing from one par-
ticipant (technical error). All had normal color vision (screened with
HRR Pseudoisochromatic Plates [13]), gave informed consent, and re-
ceived partial course credit. The UW–Madison Internal Review Board
approved the protocol.
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Figure 4. UW-58 colors used in Experiment 1 and 2, plotted in CIELAB
color space. Exact coordinates are given in Supplementary Table S.1.

Design, displays, and procedure. Participants rated how much they
associated each of the UW-58 colors with each of 12 fruit concepts.
Displays on each trial contained a concept name at the top of the screen
in black text, a colored square centered below the name (100× 100
pixels), and a line-mark slider scale centered below the colored square.
The left end point of the scale was labeled “not at all”, the right end
point labeled “very much”, and the center point was marked with a
vertical divider. Participants made their ratings by sliding the cursor
along the response scale and clicking to record their response. Displays
remained on the screen until response. Trials were separated by a
500 ms inter-trial interval. All 58 colors were rated for a given concept
before going onto the next concept. The order of the concepts and the
order of colors within each concept were randomly generated for each
participant.

Before beginning, participants completed an anchoring procedure so
they knew what it meant to associate “not at all” and “very much” in
the context of these concepts and colors [34]. While viewing a display
showing all colors and a list of all concepts, they pointed to the color
they associated most/least with each concept. They were told to rate
those colors near the endpoints of the scale during the task.

Displays were presented on a 24.1 in ASUS ProArt PA249Q monitor
(1920×1200 resolution), viewed from a distance of about 60 cm. The
background was gray (CIE Illuminant D65, x = .3127, y = .3290, Y =
10 cd/m2). The task was run using Presentation (www.neurobs.com).
We used a Photo Research PR-655 SpectraScan spectroradiometer to
calibrate the monitor and verify accurate presentation of the colors. The
deviance between the measured colors and target colors in CIE 1931
xyY coordinates was < .01 for x and y, and < 1 cd/m2 for Y.

The mean ratings for all fruit-color pairs averaged over all partici-
pants are shown in Supplementary Figs. S.1 and S.2 and Supplementary
Table S.3.

3.2 Training color extraction and testing performance
Our goal was to learn a method for extracting color distributions from
images such that the extracted profiles were reliable estimates of human
color-concept association ratings from Section 3.1. We will describe
our approach here using generic parameter names. The parameter
values we actually used in the experiments are specified in the relevant
experiment descriptions (Section 4).

For each of the ncon concepts, we queried Google Images us-
ing the name of the concept and downloaded the top nimg results.
We then compiled a list of nfeat features. A feature is a function
f : (image,color)→ R that quantifies the presence of a given target
color in a given image. For example, a feature could be “the proportion
of pixels in the middle 20% of the image that are within ∆r = 40 of
the target color”. For each of the nimg images and each of the ncol
colors, we evaluated each of the nfeat features. This resulted in a ma-
trix X ∈Rnconnimgncol×nfeat , where each row was a (concept, image,color)
triplet and each column was a different feature. We then constructed
a vector y ∈ Rnconnimgncol×1 such that the ith element of y contains the

average color-concept rating from the human experiments, for the con-
cept and color used in the ith row of X . Note that each rating in y was
repeated nimg times because for each (concept,color) pair, there are
nimg images. We used the data (X ,y) in two ways: (1) to select how
many features to use and (2) to choose feature weights.
Feature selection. We used sparse regression (lasso) with leave-one-
out cross-validation to select features. Specifically, we selected a con-
cept, partitioned (X ,y) by rows into test data (Xtest,ytest), containing the
rows pertaining to the selected concept, and training data (Xtrain,ytrain),
containing the remaining concepts. We then used sparse regression on
the training data with a sweep of the regularization parameter. This
was repeated with every concept and we plotted the average test er-
ror versus the number of nonzero weights (Fig. 5). We examined the
plot and found that k = 4 features provided a good trade-off between
error and model complexity, so we used k = 4 features for all subse-
quent experiments. To select which features to use, we ran one final
sparse regression using the full data (X ,y) and chose the regularization
parameter such that k = 4 features emerged.

Using cross-validation for model selection is standard practice in
modern data science workflows. By validating the model against data
that was unseen during the training phase, we are protected against
overfitting and we help ensure that our model will generalize to unseen
concepts and colors or different training images.
Choosing feature weights. Once the best k features were identified,
we selected the weights by performing an ordinary linear regression
with these k features. We ensured that human data used to compute the
model weights were always different from human data used test model
performance. In Experiment 1 and 2, when we trained and tested on
fruit concepts, we chose feature weights using 11 fruits and tested on
the 12th fruit (repeated for each fruit). In Experiment 3, we used a
model trained on all 12 fruit concepts to test how well it predicted data
for recycling concepts (Section 4.5).
Testing the model on new data. Once the model has been trained, it
can be used to estimate color-concept associations for new concepts
and new colors without the need to gather any new human ratings.
The concept is queried in Google Images, the k chosen features are
extracted from the images for the desired colors, and the trained model
weights are applied to the features to obtain the estimates.
Reproducible experiments. We used cross-validation in order to en-
sure our results hold more broadly beyond our chosen concepts, colors,
and images. We developed code in Python for all the experiments
and made use of the scikit-image [47] and scikit-learn [36]
libraries to perform all the image processing and regression
tasks. Our code is available at https://github.com/Raginii/
Color-Concept-Associations-using-Google-Images. This
repository can be downloaded to a local machine to replicate the entire
study or adapt it to test new concepts and colors. The repository also
contains a write-up with detailed instructions.

4 EXPERIMENTS

In Experiments 1A–1C, we systematically tested methods for extracting
colors from images and assessed model fits with human color-concept
association ratings. In Experiment 2, we examined model performance
using different image types (top 50 Google Image downloads, cartoons,
and photographs). In Experiment 3, we tested how well our best model
from Experiment 1 generalized to a different set of concepts and colors.

4.1 Experiment 1A: Balls in Cartesian coordinates
Perhaps the simplest approach for extracting colors from images would
be to (1) define a set of target colors of interest in a color space (e.g.,
CIELAB), (2) query a concept in Google Images (e.g., “blueberry”), (3)
download images returned for that concept, and (4) count the number of
pixels in each image that has each target color within the set. However,
that level of precision would exclude many colors in images, including
some that are perceptually indistinguishable from the target colors.
Moreover, not all pixels in the image may be relevant. For example,
when people take pictures of objects, they tend to put the object near
the center of the frame [32], so it is sensible that images ranked highly
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Figure 5. Mean squared test error (MSE) as a function of the number of
features selected using sparse regression (lasso). MSE is averaged over
12 models obtained using leave-one-out cross-validation, using each fruit
category as different test set. We selected models with four features.

in Google Images for particular query terms will have the most relevant
content near the center of the frame.

In this experiment, we varied color tolerance: allowing colors that
are not perfect matches with targets to still be counted, and spatial
windows: including subsets of the pixels that may be more likely to
contain relevant colors for the concept. Our goal was to determine
which combination of color tolerance and spatial window best captured
human color-concept associations.

4.1.1 Methods

In this section, we explain how we downloaded and processed the
images, constructed features, and selected features for our model.
Images. We used the same set of testing and training images through-
out Experiment 1, downloaded for each fruit using Vasa’s [48] Google
Images Download Python script available on GitHub. We used the
top nimg = 50 images returned for each fruit that were in .jpg format,
but our results are robust to using a different number of images (see
Supplementary Section S.4). We did not use the Google Image Search
API used in prior work [23, 42] because it has since been deprecated.
We made the images uniform size by re-scaling them to 100× 100
pixels, which often changed the aspect ratio.

We converted RGB values in the images to CIELAB coordinates
using the rgb2lab function in scikit-image. This conversion makes
assumptions about the monitor white point and only approximates
true CIELAB coordinates. It is standard to use this approximation in
visualization research given that in practice, people view visualizations
on unstandardized monitors under uncontrolled conditions [12, 16,
44, 45]. Although our model estimations are constructed based on
approximations of CIELAB coordinates, our human data were collected
on a calibrated monitor with true CIELAB coordinates (see Section 3.1).
Thus, the fit between human ratings and model approximations speaks
to the robustness of our approach.
Features. We constructed 30 features from all possible combinations
of 5 color tolerances and 6 spatial windows as described below.

Color tolerances. When looking for a target color within a set of
pixels in an image (set defined by the spatial window), we counted the
fraction of all pixels under consideration whose color fell within a ball
of radius ∆r in CIELAB space of the target color. We tested balls with
five possible values of ∆r: 1, 10, 20, 30, and 40.

Spatial windows. We varied spatial windows in six ways. The
first five extracted pixels from the center 20%, 40%, 60%, 80%, and
100% of the image, measured as a proportion of the total area. The
6th way used a figure-ground segmentation algorithm to select figural,
“object-like” regions from the image, and exclude the background. Here
“window” is not rectangular, but rather the shape of the figural region(s)
as estimated by the active contour algorithm [28,49], Snakes. This uses
an initial contour binary mask and iteratively moves to find the object
boundaries. We used the MATLAB implementation activecontour
from the Image Processing Toolbox for 500 iterations, setting the
initial contour as the image boundary. Although prior work suggested
that figure-ground segmentation might not provide a benefit beyond
eliminating borders [23], we aimed to test its effects in the context of
our other color tolerance and spatial window parameters.

Feature selection. We applied the feature selection method described
in Section 3.2 using the 30 features described above, as well as a
constant offset term, which is standard when using regression. Using
an offset is equivalent to adding one more feature equal to the constant
function 1. Fig. 5 shows the mean squared error (MSE) for each number
of features, averaged across all ncon = 12 fruits, using the ncol = 58
UW-58 colors, and using nimg = 50 Google Image query results for
each fruit.

Based on this plot, we decided to use 4 features, which yields a good
trade-off between model complexity and error reduction. We then used
the full dataset to select the best 4 features, as described in Section 3.2.

The best 4 features were (1) constant offset, (2) 20% window with
∆r = 40 (positive weight), (3) 100% window with ∆r = 40 (negative
weight), and (4) segmented figure with ∆r = 40 (positive weight), see
Table 1. The positive weight on the center of the image and negative
weight on 100% of the image can be interpreted as a crude form of
background suppression.

Table 1. Top 4 features selected using sparse regression as more fea-
tures were made available in Experiments 1A to 1C. Ball features were
not selected when sector or category features became available.

Model description Features selected

Ball model constant offset
(Experiment 1A) Ball: ∆r = 40; 20% window

Features available: Ball: ∆r = 40; 100% window
Ball only Ball: ∆r = 40; segmented

Sector model constant offset
(Experiment 1B) Sector: ∆r = 40, ∆h = 40°; 20% window

Features available: Sector: ∆r = 40, ∆h = 30°; 40% window
Ball, Sector Sector: ∆r = 40, ∆h = 40°; segmented

Sector+Cat model constant offset
(Experiment 1C) Sector: ∆r = 40, ∆h = 40°; 20% window

Features available: Sector: ∆r = 40, ∆h = 40°; segmented
Ball, Sector, Category Category; 20% window

4.1.2 Results and discussion
We tested the model on each of the fruits using the leave-one-out
cross-validation procedure described in Section 3.2. We trained model
weights using the 11× 50 = 550 training images and averaged the
model estimates across the 50 test images. We tested the effectiveness
of the Ball model by correlating its estimates with mean human ratings
over all 12 fruits × 58 colors and found a moderate correlation of .65
(Table 2). Fig. 6 shows the correlations separately for each fruit (light
gray points), with fruits sorted along the x-axis from highest to lowest
r value for the Ball model. There is wide variability in the model fits,
ranging from r = .93 for orange to r = .27 for blueberry.

To understand why the model performed poorly for some fruits,
we plotted estimated ratings for each color as a function of human
ratings. Fig. 7 highlights a subset of three fruits with high, medium,
and low correlations. The full set of plots are shown in Supplementary
Fig. S.3. Error in performance seemed to arise from underestimating
the association strength for colors that did not appear in the images
but were associated with the concepts. This was particularly apparent
for blueberry, where participants strongly associated a variety of blues
that were more saturated and purplish than the blues that appeared
in images of blueberries. Model estimates for those blues were as
low as model estimates for oranges and greens, which were clearly
not associated with blueberry. The model also overestimated values
for grays and purples that were not associated with blueberry. These
results suggested that different kinds of features would be necessary
for capturing human color-concept associations.

4.2 Experiment 1B: Sectors in cylindrical coordinates
A potential limitation of the ball features in Experiment 1A is that vary-
ing the size of the ball has different perceptual consequences depending
on the location in color space. This is because perceptual dimensions
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Experiment 1A (Ball model), Experiment 1B (Sector model), and Experiment 1C (Sector+Category model). The Sector+Category model performed
best, followed by the Sector model, then the Ball model, see Table 2 and text for statistics.

Table 2. Correlations (r) between mean human color-concept association
ratings and estimated associations (12 fruits × 58 colors = 696 items)
for each model in Experiments 1 and 2 (also shown Fig.8). All p < .001.

Model Top 50 Photo Cartoon

Ball .65 .62 .72
Sector .72 .69 .72
Sector+Category .81 .80 .80

of color are cylindrical (angle: hue, radius: chroma, height: lightness)
rather than Cartesian. Balls of a fixed size that are closer to the central
L* axis will span a greater range of hue angles than balls that are farther
away (i.e., higher chroma). In the extreme, a ball centered on a* = 0
and b* = 0 (e.g., a shade of gray) will include colors of all hues. Thus,
if we wanted a ball that was large enough to subsume all the high
chroma blues (i.e., colors strongly associated with blueberries), that
same large ball placed near the achromatic axis would subsume all hues
of sizable chroma (see Figure 1).

To have independent control over hue and chroma variability, we de-
fined new features with tolerance regions as cylindrical sectors around
the target colors according to hue angle and chroma (Fig. 1). We
tested whether color extraction using sector features, more aligned with
perceptual dimensions of color space, would better estimate human
color-concept associations. We used the same images as in Experi-
ment 1A, and confined the number of features to four, using the same
sparse regression approach as in Experiment 1A for feature selection.
We assessed whether the best model included any of these new features,
and if so, if that model’s estimates fit human ratings significantly better
than the Ball model did in Experiment 1A.

4.2.1 Methods

We included the same 30 features from Experiment 1A, plus 150 new
features: 25 new color tolerance regions × 6 spatial windows (same
spatial windows as Experiment 1A) for a total of 180 features. The 25
new color tolerance regions were defined in cylindrical coordinates in
CIELch space using all combinations of 5 hue angle tolerances (∆h: 5°,
10°, 20°, 30°, 40°) and 5 chroma/lightness tolerances (∆r: 1, 10, 20, 30,
40) around each target color, see Fig. 1. The tolerances for chroma and
lightness co-varied, so ∆r = 10 means that both chroma and lightness
had a tolerance of 10. Note that CIELch space is the same as CIELAB
space except it uses cylindrical rather than Cartesian coordinates.

4.2.2 Results and discussion

As in Section 4.1.1, we first extracted the best 4 features from the
pool of 180 features using sparse regression. The 4 top features only
included sector features and no ball features (Table 1), so we refer to
the model from Experiment 1B as the “Sector” model.

We tested the effectiveness of the Sector model by correlating its
estimates with mean human ratings over all 12 fruits × 58 colors. This
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Figure 7. Scatter plots showing relationships between model estimates
and human ratings for lemon, lime, and blueberry using models from
Experiments 1A–1C. Marks represent each of the UW-58 colors, dashed
line represent best-fit regression lines, and r values indicate correla-
tions within each plot. Adding more perceptually relevant (sector) and
cognitively relevant (category) features improved fit for fruits where ball
features performed poorly.

correlation (r = .72) was stronger for the Sector model than for the
Ball model (Table 2), and that difference was significant (z = 2.46,
p = .014). Fig. 6 (medium gray points) shows that the Sector model
improved performance for fruits that had the weakest correlations in
Experiment 1A, but there is still room for improvement. The scatter
plots in Fig. 7 show that the model still under-predicts ratings for blues
that are strongly associated with blueberries but are not found in the
images. A similar problem can be observed for limes, where several
greens are associated with limes, but are not extracted from the images.
The full set of scatter plots is in Supplementary Fig. S.4.

These results suggest that when people form color-concept associ-
ations, they might extrapolate to colors that are not directly observed
from visual input. We address this possibility in Experiment 1C.

4.3 Experiment 1C: Color categories
In Experiment 1C, we examined the possibility that human color-
concept associations extrapolate to colors that are not directly observed
from visual input. One way that extrapolation might occur is through
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color categorization. Although colors exist in a continuous space, hu-
mans partition this space into discrete categories. English speakers use
11 color categories with the basic color terms red, green, blue, yellow,
black, white, gray, orange, purple, brown, and pink [5]. The number of
basic color terms varies across languages [5, 11, 20, 37, 51], but there
are regularities in the locus of categories in color space [1, 20].

We propose that when people form color-concept associations from
visual input, they extrapolate to other colors that are not in the visual
input but share the same category (category extrapolation hypothesis).
To test this hypothesis, it was necessary to first identify the categories
of each color within images. We did so using a method provided
by Parraga and Akbarinia [35], which used psychophysical data to
determine category boundaries for each of the 11 color terms. Their
algorithm enables efficient lookup and categorization of each pixel
within and image. We then constructed a new type of feature that
represents the proportion of pixels in the image that share the color
category of each of the UW-58 colors. For example, if .60 of the pixels
in the image are categorized as “blue” (using [35]), then all UW-58
colors that are also categorized as “blue” will receive a feature value
of .60, regardless of how much of those UW-58 colors were in the
image. We assessed whether the best model included any category new
features, and if so, whether that model’s estimates fit human rating
significantly better than the Sector model did in Experiment 1B.

4.3.1 Methods

We included the 30 ball and 150 sector features in Experiments 1A
and 1B, plus 6 new color category features for a total of 186 features.
We generated category features using Parraga and Akbarinia’s [35]
method to obtain the color categories of our UW-58 colors and the
categories of each pixel within our images. We used the functions
available through their Github repository [2] to convert RGB color
coordinates to color categories. Specifically, we converted the 100×
100×3 image arrays in RGB to 100×100 arrays, where each element
in the array represents the pixel’s color category. For each UW-58
color, we defined the features to be the fraction of pixels in the spatial
window that belonged to the same color category as the UW-58 color.
We repeated the above procedure with the 6 spatial windows as before.

4.3.2 Results and discussion

Similar to Experiments 1A and 1B, we used sparse regression to extract
the best 4 features among 186 total features. The model selected the
constant offset and two of the same sector features from Experiment 1B,
plus one new category feature (no ball features), see Table 1). Thus, we
refer to this new model as the “Sector+Category” model. We obtained
the model weights via linear regression as detailed in Section 3.2.

We tested the effectiveness of the Sector+Category model by cor-
relating its estimates with mean human ratings over all 12 fruits × 58
colors. This correlation was stronger for the Sector+Category model
than for the Ball model or Sector model (Table 2), and those differences
were significant (z = 6.55, p < .001; z = 4.08, p < .001, respectively).
Fig. 6 shows that the Sector+Category model (black points) further
improved fits for the fruits that had weaker fits using the other two mod-
els. As seen in Fig. 7, by including category extrapolation, this model
increased the estimated values for colors that were strongly associated
with limes and blueberries (greens and blues, respectively) that were
under-predicted by the previous models because those colors were not
in the images. The full set of scatter plots is in Supplementary Fig. S.5.

4.4 Experiment 2: Comparing image types

As described in Section 2.1.1, Lin et al. [23] queried concept words
alone and concept words appended with “clipart”, reasoning that hu-
manmade illustrations might better capture associations for some types
of concepts. We propose that humans produce clipart illustrations based
on their color-concept associations, not solely based on real-world color
input. If color-concept associations are already incorporated into clipart,
that would explain why clipart is useful for estimating color-concept
associations, especially when natural images fall short. However, if a
model contains features that effectively estimate human color-concept

associations, it may have sufficient information to do as well for nat-
ural images as it does for humanmade illustrations, such as clipart.
To examine this hypothesis, we tested our models from Experiments
1A-C on two new image types: cartoons (humanmade illustrations) and
photographs (not illustrations).

In addition, we used the approach of Lin et. al. (mentioned in
Section 2.1.2) to compute probabilities, a precursor to their affinity
score that most corresponds to color-concept associations. We then
compared those probabilities with our human ratings.

4.4.1 Methods

We downloaded two new sets of images, by querying each fruit name
appended with “cartoon” or “photo”. We queried “cartoon” rather than
“clipart” because clipart sometimes contained parts of photographs with
the background deleted, and we wanted to constraint this image set to
humanmade illustrations. Unlike Experiment 1 where we used the first
50 images returned by Google Images, we manually curated the photo
and cartoon image sets to ensure (a) they were photos for the photo set
and cartoons in the cartoon set, (b) they included an observable image of
the queried fruit somewhere in the image, and (c) they were not images
of cartoon characters (e.g., “Strawberry Shortcake”, a character in an
animated children’s TV show that first aired in 2003). This resulted in
50 images in each set.

We trained and tested using the same top 4 features from the Ball,
Sector, and Sector+Category models in Experiment 1, except we sub-
stituted the training images for the manually curated sets of cartoon
images or photo images. This yielded three sets of model weights for
the different image types. We then compared each model’s performance
for the three image types.

4.4.2 Results and discussion

Fig. 8 and Table 2 show the overall correlations between color-concept
associations and model estimates across all 12 fruits × 58 colors. The
correlations for the top 50 images are those previously reported in
Experiment 1A–1C, and included here as a baseline. Fig. 8 also shows
overall correlations with the probabilities computed using the method
of Lin et. al. [23] as another baseline.

The results suggest there is a benefit to using human-illustrated
cartoons for the Ball model (which does not effectively capture hu-
man color-concept associations), but the benefit diminishes for the
Sector and Sector+Category models (which better capture human color-
concept associations). Specifically, the Ball model using cartoons was
significantly more correlated with human ratings than the Ball model
using top 50 images (z = 2.46, p = .014) with no difference between
cartoon and top 50 images for the other two models (Sector: z = 0.0,
p = 1.0; Sector+Category: z = .53, p = .596). There were no signif-
icant differences in fits using photo vs. top 50 images for any of the
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Figure 8. Correlations for top 50 images, photo images, and cartoon
images using the Ball, Sector, and Sector+Category models. The Sec-
tor+Category model performed best and was similar across all image
types. The Ball model was worst for top 50 and photo images, but less
poor for cartoon images. Estimates based on Lin et al. [23] were strongly
correlated with human ratings, but less so than the Sector+Category
model (see text for statistics and explanation).
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three model types (Ball: z= 0.94, p= .347; Sector: z= 1.11, p= .267;
Sector+Category: z = 0.53, p = .596).

To further understand these differences, we tested for interactions
between image type and feature type, using linear mixed-effect regres-
sion (R version 3.4.1, lme4 1.1-13, see [7]). The dependent measure
was model error for each fruit (sum of the squared errors across colors
for each fruit). We included fixed effects for Model, Image, and their
interactions, and random slopes and intercepts for fruit type within
each Model contrast and Image contrast. We initially tried including
random slopes and intercepts for interactions, but the model became
too large and the solver did not converge. We tested two contrasts for
the Model factor. The first was Category+Sector vs. average of Ball
and Sector, which enabled us to test whether Category+Sector was
overall better than the other two models. The second was Sector vs.
Ball, which enabled us to test whether the Sector model was better
than the Ball model. We tested two contrasts for the Image factor. The
first was cartoon vs. average of top 50 and photo, which enabled us
to test whether cartoons were overall better than the other two images
types. The second contrast was top 50 vs. photo, which enabled us to
test whether top 50 images (which included some cartoons) were better
than photos. Reported beta and t-values are absolute values.

The results for the Model contrasts showed that Sector+Category
model preformed best, and the Sector model performed better than the
Ball model. That is, there was less error for Sector+Category than the
combination of Ball and Sector (β = 0.10, t(11) = 4.42, p= .001), and
less error for Sector than for Ball (β = 0.083, t(11) = 7.90, p < .001).
The contrasts for Image were not significant (ts < 1), indicating no
overall benefit for human made cartoons.

However, the first Image contrast comparing cartoons vs. the average
of top 50 and photo interacted with both Model contrasts. Looking
at the interaction with the first Model contrast (Sector+Category vs.
average of Ball and Sector), the degree to which Sector+Category
model outperformed the other models was greater for top 50 and photo
images than for cartoons (β = 0.01, t(44) = 4.38, p < .001), see Fig.
8. Looking at the interaction with the second Model contrast (Sector vs.
Ball), the degree to which Sector model outperformed the Ball model
was greater for the top 50 and photo images than the cartoons (β = 0.02,
t(44) = 6.65, p < .001). No other interactions were significant (ts < 1).

In this experiment, we also evaluate how Lin et al.’s estimates of
color-concept associations [23] match our human ratings. Their esti-
mates come from a hybrid of color distributions extracted from top
image downloads and clipart, so we provide their model with our top
50 images and cartoons as input. As shown in Fig. 8, the correlation
for all fruits and colors was r = .74, which is similar to our Sector
models (r = .69 to .72 depending on image type) and less strong than
our Sector+Category models (r = .80 to .81 depending on image type).
The difference in correlation for the Lin et al. model and our Sec-
tor+Category model for the top 50 images was significant (z = 3.29,
p < .001). We note that these models are not directly comparable be-
cause our models used either top 50 images or cartoons, not both at the
same time (except if cartoons happened to appear in the top 50 images).

In summary, using cartoon images instead of other image types
helped compensate for the poor performance of our Ball model. How-
ever, image type made no difference for our more effective Sector and
Sector+Category models. We interpret these results as showing that
cartoons help the Ball model compensate for poorer performance be-
cause humans make cartoons in a way that builds in aspects of human
color-concept associations. For example, visual inspection suggests
that cartoon blueberries tend to contain saturated blues that are highly
associated with blueberries yet not present in photographs of blueber-
ries. However, the benefit of humanmade illustrations is reduced if
model features are better able to capture human color-concept associ-
ations. This suggests that using our Sector+Category models on the
top Google Image downloads is sufficient for estimating human color-
concept associations without further need to curate the image set, at
least for the concepts tested here.
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Figure 9. Correlations between human ratings and estimated ratings
across all colors for each recycling-related concept using the Sec-
tor+Category model. The range of correlations is similar to fruits (Fig. 6.)

4.5 Experiment 3: Generalizing beyond fruit
Experiment 3 tested how well our model trained on fruit generalized
to a new set of concepts and colors using the recycling color-concept
association dataset from [41]. The concepts were: paper, plastic,
glass, metal, compost, and trash, and colors were the BCP-37 (see
Supplementary Table S.2). Unlike fruits, which have characteristic
colors, recyclables and trash can come in any color. Still, human
ratings show systematic color-concept associations for these concepts,
and we aimed to see how well our model could estimate those ratings.

4.5.1 Methods
As in Experiment 1, we downloaded the top 50 images from Google
Images for each recycling-related concept. To estimate color-concept
associations, we used our Sector+Category model from Experiment 1C
with feature weights determined from a single linear regression using
all 12 fruits, as described in Section 4.3.

4.5.2 Results and discussion
We tested the effectiveness of the Sector+Category model by correlating
its estimates with mean human ratings over all 6 recycling-related con-
cepts × 37 colors. The correlation was r = .68, p < .001, moderately
strong, but significantly weaker than the corresponding correlation of
.81 for fruit concepts in Experiment 1C (z = 3.84, p < .001). Fig. 9
shows the correlations separately for each recycling concept. The fits
range from .88 for paper to .40 for plastic, similar to the range for fruits
in Experiment 1C (.94 to .49) (see Supplementary Fig. S.6).

5 GENERAL DISCUSSION

Creating color palettes that are semantically interpretable involves two
main steps, (1) quantifying color-concept associations and (2) using
those color-concept associations to generate unique assignments of
colors to concepts for visualization. Our study focused on this first step,
with the goal of understanding how to automatically estimate human
color-concept associations from image statistics.

5.1 Practical and theoretical applications
We built on approaches from prior work [4, 23–25, 42] and harnessed
perceptual and cognitive structure in color space to develop a new
method for effectively estimating human color-concept associations.
Our method can be used to create the input for various approaches to
assigning colors to concepts for visualizations [4, 14, 23, 41, 42]. By
estimating full distributions of color-concept associations over color
space that approximate human judgments (as opposed to identifying
only the top associated colors), it should be possible to use assignment
methods to define multiple candidate color palettes that are semantically
interpretable for a given visualization. This flexibility will enable
balancing semantics with other important factors in design, including
perceptual discriminability [15,44,45], name difference [16], aesthetics
[12], and emotional connotation [4].

Our method can also be used to design stimuli for studies on visual
reasoning. For example, evidence suggests people use assignment
inference to interpret visualizations [41] (Section 2.1.2), but little is
known about how assignment inference works. Studying this processes
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Figure 10. Process model for how color-concept associations are formed.

requires the ability to carefully manipulate color-concept association
strengths within visualizations, which requires having good estimates
of human color-concept associations.

5.2 Forming color-concept associations
In addition to providing a new method for estimating color-concept
associations, this study sparked new insights into how people might
form color-concept associations in the first place. In Fig. 10, the
path with solid arrows illustrates our initial premise for how people
learn color concept associations from their environment. When they
experience co-occurrences between colors and concepts, they extract
color distributions and use them to update color-concept associations
[39]. In Fig. 10, color-concept association strength is indicated using
marker width (e.g., blueberry is highly associated with certain shades
of blue). However, in the present study we found that it was insufficient
to only extract colors (or nearby colors) from images to estimate human
color-concept associations (Experiments 1A and 1B). We needed to
extrapolate to other colors that shared the same category as colors
within the image to produce more accurate estimates (Experiment 1C).

Based on these results, we propose there is another part of the
process—category extrapolation—illustrated by the path with dashed
arrows in Fig. 10. While extracting the color distribution from color
input, people categorize colors using basic color terms (e.g., “blue”).
This categorization process extrapolates to colors that are not in the
visual input, but are within the same color category (e.g., extrapolat-
ing to all colors categorized as “blue” upon seeing a blueberry, even
though only a subset of blues are found in the image). We believe that
extrapolated colors augment the color distribution extracted from color
input, which in turn further updates color-concept associations. Given
that categorization can influence color perception [10, 19, 37, 50] and
memory [3,21] (see [51] for a review), category extrapolation may also
feedback to influence color experiences.

5.3 Open questions and limitations

Generalizability to other concepts. In this study, we focused on
fruit—concrete objects with directly observable colors—so we could
study different methods of extracting and extrapolating colors from
images where the colors would be systematic. We assessed generaliz-
ability to other, recycling-related concepts that are less color diagnos-
tic [46] than fruit (e.g., paper, plastic, and glass can be any color), but
recyclables are still concrete objects. However, there is concern that

image-based methods may not be effective for estimating color-concept
associations for abstract concepts that do not have directly observable
colors [23, 42], though see [4]. Nonetheless, people do have systematic
associations between colors and abstract concepts [30, 31, 52]. Future
work will be needed to asses the boundary conditions of image based
methods and further explore incorporating other, possibly language-
based methods [14, 42] for estimating color-concept associations for
abstract concepts.
Image segmentation. Our models might also be limited in their ability
to generalize for concepts that refer to backgrounds rather than objects
(e.g., “sky”) [23]. All three models included a feature that extracted
colors from figural regions and segmented away the backgrounds. Fur-
ther research is needed to evaluate performance for background-related
concepts, but limitations might be mitigated using semantic segmenta-
tion, in which particular regions of images are tagged with semantic
labels [27].
Cultural differences. Our category extrapolation hypothesis implies
that color-concept associations could differ between cultures whose
languages have different color terms. Different languages partition
color space in different ways [5, 11, 20, 37, 51]—e.g., some languages
have separate color terms for blues and greens, whereas others have
one term for both blues and greens. If a language has separate terms
for blues and greens, experiencing blue objects like blueberries should
result in color-concept associations that extrapolate only to other blues,
not greens. But, if a language has one term for blues and greens,
experiencing blueberries should result in associations that extrapolate
to blues and greens. This is an exciting area for future research.
Structure of color categories. Our model defined color categories
using a boundary approach—either a color was in a given category
or not, with no distinction among category members. However, color
categories have more complex structure, including a prototype, or best
example, and varying levels of membership surrounding the prototype
[38]. A model that accounts for these complexities in category structure
may improve on the fit to human color-concept associations.

6 CONCLUSION

The goal of this study was to assess methods for automatically estimat-
ing color-concept associations from images. We tested different color
extraction features that varied in color tolerance and spatial window,
different kinds of images, and different concept sets. The most effec-
tive model used features that were relevant to human perception and
cognition—features aligned with perceptual dimensions of color space
and a feature that extrapolated to all colors within a color category.
This model performed similarly well across the top 50 images from
Google Images, curated photographs, and curated cartoon images. The
model also generalized reasonably well to a different set of colors and
concepts without changing any parameters. Through this study, we pro-
duced a method trained and validated on human data for automatically
estimating color-concept associations, while generating new hypothe-
ses about how color input and category extrapolation work together to
produce human color-concept associations.
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S SUPPLEMENTARY MATERIAL

Each section of the Supplementary Material is described below, and the Supplementary figures and tables follow after.

S.1 Specifying the colors
We defined the University of Wisconsin 58 (UW-58) colors using the following steps. First, we superimposed a 3D grid in CIELAB space with a
distance ∆ = 25 in each dimension (L*, a*, and b*), and then selected all points whose colors could be rendered in RGB space (using MATLAB’s
lab2rgb function). We chose ∆ = 25 because it enabled us to achieve similar criteria that had been used to sample the Berkeley Color Project 37
colors (BCP-37), which are often used in color cognition studies [?, 33]. These criteria are: (a) include highly saturated approximations of unique
hues (red, yellow, green, and blue) and intermediary hues, (b) include each hue sampled at three lightness levels and multiple chroma levels, and
(c) include white, black, and intermediate grays at each lightness level. Unlike the BCP-37 colors, our color set is uniformly sampled in CIELAB
space. Given the irregular shape of CIELAB space (and perceptual color spaces more generally), it is not possible to obtain colors for each hue at
all possible lightness and chroma levels. We tried rotating the grid around the achromatic axis to get as many RGB valid high-chroma colors as
possible and found a rotation of 3° included the largest set. Table S.1 contains the specific coordinates for all 58 UW colors in CIE 1931 xyY,
CIELAB (L*,a*,b*) and CIELch (L*,c*,h) color spaces.

Table S.2 shows the coordinates for the BCP-37 colors in CIE 1931 xyY, CIELAB (L*,a*,b*) and CIELch (L*,c*,h) color spaces.
The colors include eight hues (Red, Orange, Yellow, cHartreuse, Green, Cyan, Blue, and Purple) at 4 saturation/lightness levels (Saturated,
Light, Muted, and Dark), plus Black (BK), dark gray (A1), medium gray (A2), light gray (A3) and white (WH). The color coordinates for SY,
SG, SC and WH were slightly modified to fit into the RGB gamut assumed by the MATLAB function lab2rgb(). Chroma (c*) was reduced for
SG from 64.77 to 59.7 (∆E = 5.07), for SC from 44.73 to 43.2 (∆E = 1.53), and for WH from 1.14 to 0 (∆E = 1.14). Both lightness (L*) and
chroma were reduced for SY with L* from 91.08 to 89 and c* from 86.87 to 85 (∆E = 2.80).

S.2 Results from human ratings of color-concept associations.
Figures S.1 and S.2 show the mean human color-concept association ratings for the 12 different fruits and UW-58 colors. The mean ratings (range
from 0 to 1) over all 54 participants can be found in Table S.3. The full dataset including ratings from individual participants can be found at
https://github.com/Raginii/Color-Concept-Associations-using-Google-Images/blob/master/HumanRatingsData.csv.

S.3 Model fits for each fruit concepts in Experiment 1 and recycling concepts in Experiment 3
Figures S.3–S.5 show the relation between model estimates (y-axis) and mean color-concept association ratings (x-axis) for each UW-58 color.
These scatter plots and corresponding correlations are shown separately for the Ball model in Experiment 1A (Figure S.3), Sector model in
Experiment 1B (Figure S.4) and Sector+Category in Experiment 1C (Figure S.5).

Figure S.6 shows the similar scatter plots from applying our Sector+Category model trained on fruit to a different color-concept
association dataset for recycling concepts and the BCP-37 colors.

S.4 Varying the number of training images used
Figure S.7 we shows the effect on mean squared test error of using a different number of training images when training the fruit model. Throughout
our study, we used 50 Google Image search results, but as seen in the figure, it appears there is only a modest price to pay for using far fewer
training images. While “more data” is often better, Google Image search results are already automatically curated; they are not random samples.
This might explain why using as few as five search results produces a highly representative sample of the concept in question.
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Figure S.1. Mean color-concept associations for each of the UW-58 colors and each fruit, plotted in CIELAB space. The width of the bars are
proportional to association strength. Half of the fruit are shown here and the other half are in Supplementary Fig. S.2. The numerical values are in
Table S.3 and in our github repository https://github.com/Raginii/Color-Concept-Associations-using-Google-Images.
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Figure S.2. Mean color-concept associations for each of the UW-58 colors and each fruit, plotted in CIELAB space. The width of the bars are
proportional to association strength. Half of the fruit are shown here and the other half are in Supplementary Fig. S.1. The numerical values are in
Table S.3 and in our github repository https://github.com/Raginii/Color-Concept-Associations-using-Google-Images.
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Figure S.3. Correlations between mean human color-concept association ratings and estimates of the Ball model (Experiment 1A) across the UW-58
colors for each fruit.
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Figure S.4. Correlations between mean human color-concept association ratings and estimates of the Sector model (Experiment 1B) across the
UW-58 colors for each fruit.
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Figure S.5. Correlations between mean human color-concept association ratings and estimates of the Sector+Category model (Experiment 1C)
across the UW-58 colors for each fruit.
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Table S.1. Coordinates for the University of Wisconsin 58 (UW-58) colors in CIE 1931 xyY space, CIELAB color space, and CIELch color space. The
“L*” in CIELAB and CIELch is the same. The white point used to convert between CIE 1931 xyY and CIELAB space was CIE Illuminant D65 (x =
0.313, y = 0.329, Y = 100).

Color x y Y L* a* b* c* h
1 0.224 0.284 48.28 75 −23.66 −26.27 35.36 228.00
2 0.208 0.214 4.42 25 1.31 −24.97 25.00 273.00
3 0.245 0.254 18.42 50 1.31 −24.97 25.00 273.00
4 0.263 0.274 48.28 75 1.31 −24.97 25.00 273.00
5 0.286 0.199 4.42 25 26.27 −23.66 35.36 318.00
6 0.298 0.241 18.42 50 26.27 −23.66 35.36 318.00
7 0.303 0.262 48.28 75 26.27 −23.66 35.36 318.00
8 0.369 0.181 4.42 25 51.24 −22.35 55.90 336.43
9 0.353 0.226 18.42 50 51.24 −22.35 55.90 336.43
10 0.408 0.211 18.42 50 76.21 −21.04 79.06 344.56
11 0.187 0.192 18.42 50 2.62 −49.93 50.00 273.00
12 0.191 0.130 4.42 25 27.58 −48.62 55.90 299.57
13 0.231 0.184 18.42 50 27.58 −48.62 55.90 299.57
14 0.255 0.123 4.42 25 52.55 −47.32 70.71 318.00
15 0.279 0.176 18.42 50 52.55 −47.32 70.71 318.00
16 0.328 0.167 18.42 50 77.51 −46.01 90.14 329.31
17 0.178 0.140 18.42 50 28.89 −73.59 79.06 291.43
18 0.174 0.083 4.42 25 53.86 −72.28 90.14 306.69
19 0.217 0.136 18.42 50 53.86 −72.28 90.14 306.69
20 0.259 0.131 18.42 50 78.82 −70.97 106.07 318.00
21 0.253 0.351 18.42 50 −24.97 −1.31 25.00 183.00
22 0.269 0.345 48.28 75 −24.97 −1.31 25.00 183.00
23 0.313 0.329 0.00 0 0.00 0.00 0.00 0.00
24 0.313 0.329 4.42 25 0.00 0.00 0.00 0.00
25 0.313 0.329 18.42 50 0.00 0.00 0.00 0.00
26 0.313 0.329 48.28 75 0.00 0.00 0.00 0.00
27 0.313 0.329 100.00 100 0.00 0.00 0.00 0.00
28 0.410 0.291 4.42 25 24.97 1.31 25.00 3.00
29 0.374 0.305 18.42 50 24.97 1.31 25.00 3.00
30 0.357 0.312 48.28 75 24.97 1.31 25.00 3.00
31 0.434 0.281 18.42 50 49.93 2.62 50.00 3.00
32 0.492 0.257 18.42 50 74.90 3.93 75.00 3.00
33 0.308 0.524 4.42 25 −26.27 23.66 35.36 138.00
34 0.316 0.444 18.42 50 −26.27 23.66 35.36 138.00
35 0.317 0.410 48.28 75 −26.27 23.66 35.36 138.00
36 0.270 0.433 48.28 75 −51.24 22.35 55.90 156.43
37 0.418 0.450 4.42 25 −1.31 24.97 25.00 93.00
38 0.382 0.407 18.42 50 −1.31 24.97 25.00 93.00
39 0.364 0.386 48.28 75 −1.31 24.97 25.00 93.00
40 0.522 0.377 4.42 25 23.66 26.27 35.36 48.00
41 0.447 0.370 18.42 50 23.66 26.27 35.36 48.00
42 0.410 0.362 48.28 75 23.66 26.27 35.36 48.00
43 0.509 0.333 18.42 50 48.62 27.58 55.90 29.57
44 0.566 0.299 18.42 50 73.59 28.89 79.06 21.44
45 0.368 0.525 18.42 50 −27.58 48.62 55.90 119.57
46 0.360 0.471 48.28 75 −27.58 48.62 55.90 119.57
47 0.297 0.577 18.42 50 −52.55 47.32 70.71 138.00
48 0.310 0.503 48.28 75 −52.55 47.32 70.71 138.00
49 0.437 0.472 18.42 50 −2.62 49.93 50.00 93.00
50 0.409 0.439 48.28 75 −2.62 49.93 50.00 93.00
51 0.502 0.421 18.42 50 22.35 51.24 55.90 66.44
52 0.457 0.407 48.28 75 22.35 51.24 55.90 66.44
53 0.563 0.373 18.42 50 47.32 52.55 70.71 48.00
54 0.618 0.330 18.42 50 72.28 53.86 90.14 36.69
55 0.394 0.521 48.28 75 −28.89 73.59 79.06 111.43
56 0.343 0.561 48.28 75 −53.86 72.28 90.14 126.69
57 0.444 0.481 48.28 75 −3.93 74.90 75.00 93.00
58 0.492 0.443 48.28 75 21.04 76.21 79.06 74.57
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Table S.2. Coordinates for the Berkeley Color Project 37 (BCP-37) colors in CIE 1931 xyY space, CIELAB color space, and CIELch color space. The
“L*” in CIELAB and CIELch is the same. The white point used to convert between CIE 1931 xyY and CIELAB space was x = 0.312, y = 0.318, Y =
116. The colors include eight hues (Red, Orange, Yellow, cHartreuse, Green, Cyan, Blue, and Purple) at 4 saturation/lightness levels (Saturated,
Light, Muted, and Dark), plus Black (BK), dark gray (A1), medium gray (A2), light gray (A3) and white (WH). The color coordinates for SY, SG, SC
and WH were modified by decreasing the chroma c and lightness L values to fit the standard RGB gamut assumed by MATLAB.

BCP Notation x y Y L* a* b* c* h
SR 0.549 0.313 22.93 51.57 62.23 32.20 70.07 27.36
LR 0.407 0.326 49.95 71.60 31.58 16.68 35.71 27.84
MR 0.441 0.324 22.93 51.57 33.58 16.98 37.63 26.83
DR 0.506 0.311 7.60 30.76 37.02 16.39 40.48 23.88
SO 0.513 0.412 49.95 71.60 31.22 69.65 76.32 65.86
LO 0.399 0.366 68.56 81.35 15.00 30.17 33.70 63.57
MO 0.423 0.375 34.86 61.70 15.94 30.33 34.26 62.28
DO 0.481 0.388 10.76 36.51 18.35 30.60 35.68 59.04
SY 0.446 0.472 91.25 91.08 −5.75 86.68 86.87 93.80
LY 0.391 0.413 91.25 91.08 −5.46 47.71 48.02 96.53
MY 0.407 0.426 49.95 71.60 −3.33 45.94 46.06 94.15
DY 0.437 0.450 18.43 46.83 −0.93 43.35 43.36 91.22
SH 0.387 0.504 68.56 81.35 −32.92 72.06 79.22 114.55
LH 0.357 0.420 79.90 86.44 −20.62 40.64 45.58 116.90
MH 0.360 0.436 42.40 66.94 −19.98 37.45 42.44 118.07
DH 0.369 0.473 18.43 46.83 −19.92 36.86 41.90 118.39
SG 0.254 0.449 42.40 66.94 −59.95 24.54 64.78 157.74
LG 0.288 0.381 63.90 79.09 −34.13 15.21 37.36 155.97
MG 0.281 0.392 34.86 61.70 −33.27 14.07 36.12 157.08
DG 0.261 0.419 12.34 38.96 −33.29 12.41 35.53 159.56
SC 0.226 0.335 49.95 71.60 −44.32 −6.11 44.73 187.85
LC 0.267 0.330 68.56 81.35 −26.12 −2.73 26.26 185.97
MC 0.254 0.328 34.86 61.70 −25.40 −4.13 25.74 189.23
DC 0.233 0.324 13.92 41.22 −24.26 −5.45 24.87 192.67
SB 0.200 0.230 34.86 61.70 −13.21 −38.40 40.61 251.02
LB 0.255 0.278 59.25 76.73 −8.87 −20.82 22.63 246.93
MB 0.241 0.265 28.90 56.99 −7.86 −21.41 22.81 249.85
DB 0.212 0.236 10.76 36.51 −6.56 −23.73 24.62 254.55
SP 0.272 0.156 18.43 46.83 57.21 −50.49 76.31 318.57
LP 0.290 0.242 49.95 71.60 26.03 −27.87 38.14 313.04
MP 0.287 0.222 22.93 51.57 28.05 −27.82 39.51 315.24
DP 0.280 0.181 7.60 30.76 33.04 −29.66 44.40 318.08
BK 0.310 0.316 0.30 2.34 −0.00 −0.07 0.07 268.99
A1 0.310 0.316 12.34 38.96 −0.01 −0.54 0.54 268.98
A2 0.310 0.316 31.88 59.42 −0.01 −0.74 0.74 268.98
A3 0.310 0.316 63.90 79.09 −0.02 −0.94 0.94 268.98
WH 0.310 0.316 116.00 100.00 −0.02 −1.14 1.14 268.98
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Table S.3. Average color ratings obtained from humans for all UW-58 colors and fruit concepts. The fruit concepts shown in the table are Mango,
Watermelon (Waterm.), Honeydew (Honeyd.), Cantaloupe (Cantal.), Grapefruit (Grapefr.), Strawberry (Strawb.), Raspberry (Raspb.), Blueberry
(Blueb.), Avocado, Orange, Lime and Lemon.

Color Mango Waterm. Honeyd. Cantal. Grapefr. Strawb. Raspb. Blueb. Avocado Orange Lime Lemon
1 0.11 0.09 0.12 0.09 0.09 0.10 0.13 0.51 0.11 0.10 0.11 0.12
2 0.08 0.07 0.11 0.09 0.08 0.08 0.12 0.81 0.12 0.08 0.11 0.08
3 0.11 0.13 0.13 0.10 0.13 0.09 0.11 0.60 0.10 0.08 0.11 0.08
4 0.11 0.11 0.13 0.07 0.12 0.10 0.09 0.40 0.10 0.10 0.10 0.13
5 0.10 0.10 0.08 0.09 0.19 0.10 0.22 0.28 0.10 0.09 0.07 0.08
6 0.12 0.19 0.10 0.13 0.23 0.22 0.30 0.22 0.13 0.10 0.08 0.11
7 0.11 0.21 0.14 0.15 0.25 0.27 0.28 0.13 0.13 0.14 0.09 0.12
8 0.11 0.25 0.09 0.10 0.23 0.32 0.48 0.18 0.07 0.11 0.07 0.08
9 0.16 0.38 0.10 0.13 0.37 0.36 0.43 0.14 0.07 0.12 0.09 0.09

10 0.15 0.40 0.11 0.09 0.30 0.42 0.47 0.11 0.08 0.15 0.07 0.09
11 0.10 0.08 0.09 0.09 0.10 0.07 0.14 0.70 0.09 0.09 0.09 0.10
12 0.10 0.08 0.09 0.08 0.09 0.06 0.15 0.86 0.11 0.10 0.07 0.09
13 0.08 0.09 0.12 0.10 0.14 0.11 0.15 0.42 0.12 0.09 0.10 0.09
14 0.07 0.09 0.10 0.08 0.16 0.13 0.20 0.28 0.11 0.08 0.08 0.09
15 0.14 0.20 0.11 0.10 0.26 0.26 0.33 0.19 0.09 0.09 0.09 0.10
16 0.12 0.28 0.10 0.11 0.22 0.33 0.42 0.14 0.08 0.13 0.07 0.09
17 0.09 0.09 0.11 0.08 0.11 0.07 0.13 0.74 0.09 0.09 0.11 0.10
18 0.08 0.10 0.12 0.07 0.11 0.07 0.12 0.85 0.11 0.09 0.09 0.09
19 0.09 0.12 0.11 0.09 0.16 0.10 0.15 0.41 0.10 0.09 0.08 0.08
20 0.09 0.14 0.12 0.09 0.20 0.22 0.29 0.19 0.12 0.12 0.07 0.08
21 0.11 0.15 0.20 0.12 0.10 0.09 0.10 0.32 0.21 0.09 0.21 0.08
22 0.11 0.12 0.16 0.11 0.10 0.12 0.15 0.31 0.15 0.12 0.17 0.11
23 0.05 0.14 0.06 0.07 0.05 0.11 0.08 0.11 0.13 0.05 0.04 0.06
24 0.07 0.10 0.10 0.08 0.08 0.08 0.07 0.13 0.10 0.08 0.07 0.07
25 0.08 0.09 0.12 0.12 0.08 0.08 0.09 0.11 0.12 0.07 0.07 0.11
26 0.14 0.16 0.12 0.15 0.11 0.09 0.09 0.11 0.10 0.10 0.12 0.15
27 0.10 0.15 0.14 0.10 0.11 0.09 0.08 0.12 0.11 0.11 0.15 0.16
28 0.11 0.33 0.08 0.14 0.27 0.45 0.51 0.17 0.07 0.12 0.07 0.08
29 0.22 0.52 0.16 0.23 0.51 0.47 0.46 0.13 0.09 0.18 0.09 0.11
30 0.21 0.38 0.16 0.22 0.46 0.40 0.37 0.11 0.10 0.18 0.10 0.13
31 0.19 0.64 0.15 0.19 0.57 0.59 0.56 0.13 0.08 0.18 0.07 0.09
32 0.15 0.52 0.11 0.13 0.34 0.58 0.57 0.12 0.07 0.17 0.07 0.09
33 0.18 0.72 0.31 0.21 0.14 0.36 0.15 0.14 0.84 0.13 0.71 0.15
34 0.25 0.53 0.48 0.27 0.14 0.29 0.16 0.14 0.69 0.13 0.66 0.22
35 0.17 0.32 0.56 0.32 0.15 0.19 0.14 0.14 0.40 0.15 0.46 0.25
36 0.15 0.28 0.36 0.21 0.13 0.16 0.13 0.18 0.32 0.12 0.39 0.15
37 0.16 0.18 0.24 0.21 0.15 0.12 0.08 0.14 0.46 0.14 0.23 0.16
38 0.28 0.15 0.29 0.37 0.19 0.11 0.10 0.11 0.37 0.21 0.19 0.32
39 0.34 0.15 0.36 0.42 0.26 0.14 0.11 0.12 0.16 0.29 0.19 0.38
40 0.27 0.13 0.17 0.29 0.18 0.15 0.13 0.09 0.16 0.44 0.08 0.15
41 0.54 0.21 0.25 0.56 0.56 0.22 0.18 0.11 0.11 0.53 0.13 0.20
42 0.43 0.27 0.29 0.57 0.58 0.25 0.23 0.10 0.10 0.42 0.14 0.20
43 0.42 0.53 0.18 0.31 0.63 0.47 0.42 0.09 0.09 0.40 0.11 0.14
44 0.17 0.74 0.13 0.13 0.45 0.75 0.64 0.09 0.08 0.22 0.08 0.10
45 0.28 0.52 0.43 0.29 0.12 0.29 0.13 0.11 0.73 0.12 0.73 0.26
46 0.27 0.36 0.61 0.28 0.18 0.19 0.14 0.12 0.49 0.16 0.57 0.42
47 0.23 0.63 0.47 0.25 0.13 0.33 0.15 0.13 0.69 0.10 0.83 0.22
48 0.22 0.54 0.52 0.27 0.13 0.26 0.17 0.16 0.53 0.13 0.71 0.22
49 0.38 0.14 0.30 0.39 0.25 0.10 0.10 0.11 0.32 0.28 0.21 0.54
50 0.54 0.12 0.43 0.54 0.37 0.12 0.11 0.11 0.21 0.38 0.17 0.63
51 0.75 0.09 0.30 0.69 0.49 0.12 0.10 0.11 0.12 0.85 0.14 0.27
52 0.62 0.14 0.38 0.78 0.58 0.16 0.19 0.09 0.12 0.65 0.15 0.33
53 0.67 0.13 0.22 0.49 0.41 0.18 0.13 0.08 0.08 0.86 0.11 0.22
54 0.32 0.68 0.11 0.22 0.33 0.75 0.56 0.07 0.07 0.35 0.09 0.14
55 0.26 0.27 0.38 0.24 0.20 0.15 0.11 0.10 0.37 0.17 0.51 0.60
56 0.20 0.51 0.45 0.27 0.13 0.26 0.13 0.11 0.53 0.12 0.77 0.25
57 0.60 0.11 0.32 0.45 0.32 0.11 0.09 0.10 0.15 0.42 0.25 0.89
58 0.85 0.12 0.32 0.73 0.45 0.11 0.11 0.07 0.11 0.82 0.16 0.46
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