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Interpreting colormap visualizations requires
determining how dimensions of color in visualizations
map onto quantities in data. People have color-based
biases that influence their interpretations of colormaps,
such as a dark-is-more bias—darker colors map to larger
quantities. Previous studies of color-based biases
focused on colormaps with weak data spatial structure,
but color-based biases may not generalize to colormaps
with strong data spatial structure, like “hotspots”
typically found in weather maps and neuroimaging brain
maps. There may be a hotspot-is-more bias to infer that
colors within hotspots represent larger quantities, which
may override the dark-is-more bias. We tested this
possibility in four experiments. Participants saw
colormaps with hotspots and a legend that specified the
color-quantity mapping. Their task was to indicate which
side of the colormap depicted larger quantities
(left/right). We varied whether the legend specified
dark-more mapping or light-more mapping across trials
and operationalized a dark-is-more bias as faster
response time (RT) when the legend specified dark-more
mapping. Experiment 1 demonstrated robust evidence
for the dark-is-more bias, without evidence for a
hotspot-is-more bias. Experiments 2 to 4 suggest that a
hotspot-is-more bias becomes relevant when hotspots
are a statistically reliable cue to “more” (i.e., the locus of
larger quantities) and when hotspots are more
perceptually pronounced. Yet, comparing conditions in
which the hotspots were “more,” RTs were always faster

for dark hotspots than light hotspots. Thus, in the
presence of strong spatial cues to the locus of larger
quantities, color-based biases still influenced
interpretations of colormap data visualizations.

Introduction

To interpretmeaning from information visualizations,
people leverage core aspects of visual processing that
extend over lower-level perceptual discrimination (e.g.,
Healey, 1996; Stone, Szafir, & Setlur, 2014; Szafir, 2017),
mid-level perceptual organization (e.g., Gramazio,
Schloss, & Laidlaw, 2014; Haroz & Whitney, 2012;
Nothelfer, Gleicher, & Franconeri, 2017; Rosenholtz,
Twarog, Schinkel-Bielefeld, & Wattenberg, 2009), and
higher-level visual reasoning (e.g., Gattis & Holyoak,
1996; Haroz, Kosara, & Franconeri, 2015; Schloss,
Gramazio, Silverman, Parker, & Wang, 2019; Zacks
& Tversky, 1999). Lower-level visual processing
is essential for perceiving input from information
visualizations, and mid-level processing is key for
organizing visual input, but it is visual reasoning that
enables people to connect perceptual properties (e.g.,
gradations of color) to abstract concepts represented in
visualizations (e.g., increased brain activity represented
in neuroimaging). Researchers have established that
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visual reasoning is easier for observers when there is
a strong correspondence between the properties of
visual features in visualizations and concepts that those
visual features represent (Giardino & Greenberg, 2014;
Kosslyn, 2006; Lin, Fortuna, Kulkarni, Stone, & Heer,
2013; Norman, 1988, 2013; Schloss et al., 2019; Schloss,
Lessard, Walmsley, & Foley, 2018; Tversky, 2011;
Tversky, Morrison, & Betrancourt, 2002; Zacks &
Tversky, 1999). However, what factors determine strong
correspondence between perceptual and conceptual
properties is still an open question.

We approach this question by studying colormap
data visualizations, like those found on weather maps,
neuroimaging brain maps, spectrograms, correlation
matrices, and gene expression matrices. Colormaps use
color variation as a channel for visual communication
(Bertin, 1983; Brewer, 1994; Brewer, Hatchard, &
Harrower, 2003; Bujack et al., 2018; Harrower &
Brewer, 2003; Rogowitz & Treinish, 1996; Roth,
Woodruff, & Johnson, 2010; Ware, 1988). Colormaps
are produced by mapping colors within a color scale
(e.g., gradations from white to black) onto quantities
in a data set and then representing those quantities
within a set of spatial coordinates (Hegarty, 2011).
Studying colormaps provides an interesting path to
understanding how people infer mappings between
visual features and concepts because there are multiple
levels of correspondence to consider.

The first level of correspondence concerns the
properties of perceptual features and concepts.
Colormaps map continuous perceptual dimensions
(e.g., variation in lightness) to continuous conceptual
dimensions (e.g., variations in quantity). This sort
of structural preservation is considered a natural
correspondence (Giardino & Greenberg, 2014; Palmer,
1978). As such, much of the research on colormaps
has focused on understanding which perceptual
properties help make color scales appear continuous
and uniform, even when colors are spatially scattered
within colormap visualizations (Borland & Taylor,
2007; Brewer, 1994, 1997; Liu & Heer, 2018; Moreland,
2009; Reda, Nalawade, & Ansah-Koi, 2018; Rogowitz
& Treinish, 1998; Silva, Santos, & Madeira, 2011; Zhou
& Hansen, 2016; for a review, see Bujack et al., 2018).

The second level of correspondence concerns the
semantic mapping between perceptual features and
concepts. For example, a given color scale can be
mapped such that the darker colors correspond to
larger quantities or smaller quantities within a data set.
One might imagine that the direction of this mapping is
inconsequential if specified by a legend, but colormaps
in published articles do not always have legends
(Christen et al., 2013; Schott, 2010), and when they do,
the direction of assignment matters. People are faster at
interpreting colormaps when mapping specified by the
legend (encoded mapping) matches their expectations
(inferred mapping) (Schloss et al., 2019). Empirical

work has begun to establish how inferred mappings
are influenced by properties of colors in colormaps
(Cuff, 1973; McGranaghan, 1989; Schloss et al., 2019),
but questions remain about how those color-based
biases are influenced by other properties of colormaps,
such as spatial structure. In the following sections,
we summarize prior work on inferred color-quantity
mappings and raise open questions about spatial
structure that motivated the present study.

Inferred mappings for colormap
data visualizations

Inferred mappings are influenced by at least two
biases—a dark-is-more bias that darker colors map to
larger quantities (Cuff, 1973; McGranaghan, 1989;
Palsky, 1999; Robinson, 1952; Schloss et al., 2019) and
an opaque-is-more bias that more opaque colors map to
larger quantities (Schloss et al., 2019). Initial studies on
the dark-is-more bias asked participants to interpret
colormaps without legends and found that participants
reported that regions of darker colors indicated larger
quantities (Cuff, 1973; McGranaghan, 1989).

In a different paradigm, Schloss et al. (2019) asked
participants to interpret colormaps that included
legends, so there was an objectively correct answer. We
explain this paradigm in detail because it is the basis for
the present study. The colormaps represented fictitious
alien animal sightings in different regions of the planet
Sparl, where the x-axis represented time and the y-axis
represented different categories of alien animals in a
grid structure (Figure 1A). The colors were biased
so one side was visibly darker and the other lighter,
balanced across trials. The colormaps appeared on light
or dark backgrounds. On half of the trials, the legend
specified that darker colors mapped to larger quantities
(dark-more encoded mapping, as in Figure 1A), and on
the other half of the trials, the legend specified lighter
colors mapped to larger quantities (light-more encoded
mapping). The encoded mapping was manipulated by
balancing the orientation of the color scale in the legend
(darker endpoint at the top or the bottom) and the
positions of the text in the legend (“Greater” at the top
or the bottom). Using the legend, participants indicated
whether there were more animal sightings early (left
half of colormap) or late (right half of colormap) in
the day. A dark-is-more bias was operationalized as
faster response times (RTs) when the legend specified
dark-more encoding than when it specified light-more
encoding.

Results showed a robust dark-is-more bias when
colormaps did not appear to vary in opacity on their
given background color. However, the opaque-is-more
bias came into play when colors did appear to vary
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Figure 1. (A) Example trial from Schloss et al. (2019). Participants saw colormaps with legends and indicated whether there were more
alien animal sightings early or late in the day. (B) Example trial in the present study. Participants saw colormaps with legends and
indicated whether there were more alien animal sightings on the left or right side of the map.

in opacity (see Roth et al., 2010, for techniques for
constructing colormaps that appear to vary in opacity
[“value-by-alpha”maps]). The opaque-is-more bias and
dark-is-more bias work together on light backgrounds
(darker colors appear more opaque), but they conflict
on dark backgrounds (darker colors appear less
opaque). When they conflict, the opaque-is-more bias
can cancel or even override the dark-is-more bias
(Schloss et al., 2019). If colormaps do not appear to
vary in opacity, the background color has little effect,
and the dark-is-more bias dominates inferred mappings
(McGranaghan, 1989; Schloss et al., 2019).

The role of spatial structure?

Previous studies on inferred mappings for colormaps
focused on mappings between colors and quantities,
with less consideration of the spatial structure within
colormap visualizations. In colormaps, color variation
is overlaid on some visual-spatial structure (e.g., a
geographic map or a brain map) to signal magnitude
in a third dimension of a data set (e.g., wind speeds
or neural activity), which is not represented in the
visual-spatial structure (Hegarty, 2011). We call this
type of visual-spatial structure background spatial
structure because it refers to the background on which
the colormap is overlaid. Studies on the dark-is-more
bias used different types of background spatial
structure, including a partial map of the United States
(McGranaghan, 1989) and a grid (Schloss et al., 2019),
which suggests that the dark-is-more bias may be robust
to background spatial structure.

Background spatial structure is distinct from what
we call data spatial structure, which is the pattern
of magnitudes (third dimension) across the x and y

coordinates of the data set. Some types of data sets
tend to have strong spatial structure, such as “hotspots,”
with the largest magnitudes concentrated at center
points (e.g., weather patterns or neural activity) (Schott,
2010). Other types of data sets tend to have weaker
spatial structure, with high and low values scattered
throughout the data set (e.g., election results).

Schott (2010) suggested that for colormaps with
hotspots, it is the spatial distribution of colored areas
that matters, not the colors themselves. Referring to
neuroimaging data, Schott (2010) posited, “I suggest,
however, that surprisingly, the “hottest” area is revealed
not necessarily by the individual colors themselves
but by their “location”. Surely, we tend to assume the
center of the area to be the “hottest” (or “coldest”)—
in the same way that we assume the center of a set
of concentric rings on a weather map betokens the
eye of the storm?” (p. 516). Thus, people may have
a space-based, hotspot-is-more bias that overrides
color-based biases like the dark-is-more bias. Prior
studies have primarily focused on colormaps with weak
data spatial structure (McGranaghan, 1989; Schloss et
al., 2019), and it is unknown how, if at all, the results
will generalize to colormaps with hotspots, typically
found in weather maps and neuroimaging. Although
Cuff’s (1973) colormaps did have hotspots, there
were comparable amounts of light and dark hotspots
within a given colormap, so the dark-is-more bias and
potential hotspot-is-more bias were never under direct
conflict.

In the present study, we investigated how the
presence of hotspots influenced the dark-is-more bias
for interpreting colormap data visualizations. We had
several reasons to suspect that hotspot structure might
override the dark-is-more bias. First, hotspots reflect
inherent structure in the data, whereas coloration
is a surface property that can be arbitrarily applied
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Figure 2. Predicted RTs for dark-more encoding (D+, black bars) and light-more encoding (L+, white bars) for dark and light hotspots
(x-axis), depending on if there is (A) only a dark-is-more bias, (B) only a hotspot-is-more bias, or (C) a combination of both a
dark-is-more and hotspot-is-more bias. Conditions in which the colors in the hotspot map to larger quantities are indicated by bold
text (i.e., D+ when the hotspots are dark and L+ when hotspots are light).

to spatial structure. Second, hotspots may be a
familiar cue to “more,” as they tend to signal larger
quantities in common visualizations, like weather
maps (Schott, 2010). Third, people tend to prioritize
shape over surface properties like color or texture
when learning to categorize objects (Landau, Smith,
& Jones, 1988), which may reflect a general bias to
prioritize spatial structure (although see Macario [1991]
and Colunga & Smith [2005] for exceptions). Fourth,
data visualization researchers have argued that spatial
factors are more effective than color for comparisons
in graphs (Cleveland & McGill, 1984) (although see
Albers, Correll, & Gleicher [2014] for exceptions).
Finally, hotspots may be perceived as more “figural”
in terms of figure-ground organization because they
are relatively small and surrounded (Rubin, 1958). It
is not immediately obvious why people might infer
that figural status represents larger quantities, but such
an account might involve the figure comprising more
“stuff” compared to the “stuffless” background that
extends behind it.

In the present study, we operationalized the dark-
is-more bias as faster RTs when the legend specified
dark-more encoding than when it specified light-more
encoding (as in Schloss et al., 2019). We operationalized
a potential hotspot-is-more bias as faster RTs when the
legend specified that the colors in the hotspot mapped
to larger quantities than when the colors outside the
hotspot mapped to larger quantities. Figure 2 shows
different potential patterns of results that would occur
depending on whether RTs are determined by only a
dark-is-more bias, only a hotspot-is-more bias, or both.
If there is only a dark-is-more bias, RTs should be faster
for dark-more encoding (D+), regardless of whether
the hotspot is dark or light (Figure 2A). If there is
only a hotspot-is-more bias, RTs should be faster for
dark-more encoding for dark hotspots and light-more

encoding for light hotspots (Figure 2B). Finally, if there
is both a dark-is-more bias and a hotspot-is-more bias,
RTs should be faster for dark-more encoded mappings
when hotspots are dark, and this difference should be
reduced, eliminated, or even slightly reversed when
hotspots are light (Figure 2C).

In the following experiments, we first tested how
the dark-is-more bias and a potential hotspot-is-more
bias contributed to interpretations of colormaps,
using a paradigm similar to Schloss et al. (2019)
(Experiment 1). We then studied the role of the
hotspot when it was a more reliable cue (Experiment 2)
and when it was more visually pronounced through
increasing lightness contrast (Experiment 3) and
decreasing noise in the underlying data used to generate
the colormaps (Experiment 4). We found that the
dark-is-more bias was far more robust than expected.
It took making the hotspot a reliable cue and strongly
visually pronounced for the hotspot-is-more bias to
override the dark-is-more bias.

Experiment 1

In Experiment 1, we tested for the dark-is-more bias
in colormaps that had strong data spatial structure
(“hotspot” configurations) and weak data spatial
structure (“scrambled” configurations); see Figure 3.
Our experiment paradigm was adapted from Schloss
et al. (2019), but we modified the colormap design
so the colormaps represented fictitious alien animal
sightings in different regions of the planet Sparl. The
x-axis and y-axis represented horizontal and vertical
coordinates on the planet (Figure 1B) rather than time
and category of animals (Figure 1A). This change
enabled us to produce continuous underlying data sets
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Figure 3. Illustration of the process used to generate colormaps with hotspot configurations and scrambled configurations (see the
description in the text for details).

with hotspot spatial structure. We used fictitious data
about a fictitious world to avoid potential knowledge
effects that could arise from testing familiar data sets
(e.g., weather maps). We tested colormaps that should
not appear to vary in opacity (Schloss et al., 2019),
so we focused on the dark-is-more bias and not the
opaque-is-more bias. The scrambled configurations
were similar to the stimuli in Schloss et al. (2019), which
enabled us to replicate prior results.

Methods

Participants
The participants were 68 undergraduates at the

University of Wisconsin–Madison (mean age =
19.91, 34 females, 34 males), who received extra
credit in their introductory psychology course for
their participation. We excluded six participants from
the analysis because their overall accuracy was less
than 90% (criteria determined a priori, following the
protocol in Schloss et al., 2019), and we excluded two
other participants because they did not complete the
experiment. Participants were divided into two groups,
balancing whether they completed hotspot colormap
trials first and scrambled colormap trials second (n =
30) or the opposite order (n = 30). This sample size was
chosen to match Experiment 2 of Schloss et al. (2019).
All participants had normal color vision (tested with
HRR Pseudoisochromatic Plates; Hardy, Rand, Rittler,
Neitz, & Bailey, 2002) and gave informed consent. The

University of Wisconsin–Madison Institutional Review
Board approved the experimental protocol for this and
all subsequent experiments.

Design and displays
To establish terminology, we refer to colormap data

visualizations as colormaps, the data set used to generate
the colormap as underlying data, and the sequence of
colors used to assign color to the underlying data as
the color scale (sometimes referred to as color ramps
elsewhere; Smart, Wu, & Szafir, 2020). The color scale
for each colormap is displayed in the legend with
legend text that specifies the encoded mapping between
endpoints of the color scale and the concepts “Greater”
and “Fewer.”

Figure 1B shows the layout of the test displays.
The colormap (500 × 250 pixels, 13.5 × 6.8 cm) was
centered on the screen and surrounded by a black
outline (1 pixel thick). The color scale (21 × 135 pixels,
.5 × 3.8 cm), positioned 65 pixels (1.4 cm) to the right
of the right edge of the colormap, was also surrounded
by a black outline (1 pixel thick). There were two line
segments (240 × 2 pixels) below the colormap (16
pixels below the bottom edge) that marked the left
and right sides of the map, with the label “Left Side”
centered below the left line segment and “Right Side”
below the right line segment. This was done to help
participants parse the left and right sides while doing
the task. The colormap and legend appeared on a
rectangular white background (450 × 780 pixels, 21
× 12.1 cm), centered behind the colormap. The white
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Figure 4. The top row shows the three color scales tested in this study: Autumn (Experiments 1–2), Hot (Experiments 3–4), and Viridis
(Experiments 1–4). These color scales are applied to the same underlying data sets to produce colormaps with dark hotspots (middle
row) and light hotspots (bottom row). The three left columns show colormaps constructed from underlying data sets with the initial
noise level used in Experiments 1 to 3, and the two right columns show colormaps constructed from underlying data sets with
reduced noise used in Experiment 4.

was the native white of the monitor (RGB = [255, 255,
255]). The surrounding background of the monitor was
a neutral gray (RGB = [128, 128, 128]). The color scales
were specified using RGB coordinates for the Autumn
color scale (from MATLAB, Natick, MA, USA)
and the Viridis color scale (from Matplotlib).1 The
colormaps were generated in MATLAB (see below),
and the rest of the layout was produced and displayed
using Presentation (www.neurobs.com). Displays were
shown in a dark room using a 24.1-in. ASUS (Taipai,
Taiwan) ProArt PA249Q monitor (1,920 × 1,200
resolution) from a viewing distance of approximately
60 cm.

Figure 3 shows how we constructed the hotspot
and scrambled colormaps (code is available at
https://github.com/SchlossVRL/colormaps). To
produce the hotspot colormaps, we first generated
contour maps for four random Gaussian distributions
positioned in each of the four quadrants of the image
(G1, G2, G3, and G4) and quantized to nine discrete
colors. The image was 500 × 250 pixels. We then
computed G as a random linear combination of
G1–G4. Next, we generated a distribution of random
Gaussian white noise (N), smoothed and quantized it
(SN), and added SN to G to produce a final colormap.
By default, these colormaps had light hotspots, and
we inverted them to produce corresponding colormaps
with dark hotspots. The Gaussian in the top left corner
was assigned a random mean that was larger than
that in the other three quadrants, thus producing a
hotspot in the top left corner. To balance the hotspot
position, we first reflected half of these images across
the horizontal axis. We then duplicated all of these
images and reflected them across the vertical axis, such
that all colormaps were left/right balanced across trials.
We also applied two different types of color scales to
the data set, “Autumn” (yellow to red; MATLAB)
and “Viridis” (yellow to green to blue; Matplotlib), to

ensure that any result we observed were not specific
to a particular set of colors (Figure 4). Thus, a single
underlying data set generated eight hotspot colormap
images from the combination of 2 hotspot lightnesses
(light or dark) × 2 hotspot sides (left or right) ×
2 color scales (Autumn or Viridis).

To produce the scrambled colormaps, we started
with the data sets in the final hotspot configurations
and scrambled the data. First, we subsampled the
image to produce a 24 × 12 grid. Next, we divided
the grid into eight 3 × 12 columns, shuffled the cells
within each column to weaken the spatial structure,
and concatenated the columns to produce the final
scrambled configuration.

Using this procedure, we generated 100 sets of
colormaps with different underlying data sets (each
set included color scale inversion, left/right reflection,
and Viridis and Autumn color scales for hotspot and
scrambled configurations). The random variation in our
procedure sometimes resulted in hotspot configurations
in which hotspots looked equally concentrated on both
sides or scrambled configurations in which lightness
appeared similar on both sides. In an initial pilot
experiment, we simply picked the first 20 data sets
generated by our algorithm, but there was a concern
that the hotspot location was not clear in some of
the hotspot configurations, and the darker side was
not clear in some of the scrambled configurations.
Therefore, we examined the hotspot and scrambled
configurations produced by each underlying data set
and selected the first 20 data sets for which hotspots
were distinctly concentrated on one side for hotspot
configurations, and one side was distinctly darker
for scrambled configurations. In total, we tested
320 colormap images: 2 configurations (hotspot or
scrambled) × 2 hotspot lightnesses (dark or light) ×
2 hotspot sides (left or right) × 2 color scales (Viridis or
Autumn) × 20 underlying data sets.
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Each of the 320 colormap images appeared four
times to accommodate four legend conditions, as
in Schloss at al. (2019). This included 2 color scale
orientations (dark-top or dark-bottom) × 2 legend
text locations (“Greater”-top or “Greater”-bottom).
Thus, the legend specified dark-more encoding when
“Greater” and dark were both at the top or both at
the bottom of the legend and light-more encoding
when “Greater” and light were both at the top or
the bottom of the legend. This design ensured that
participants had to read the legend on every trial in
order to accurately interpret the colormap visualization.
The combination of 320 colormap images × 4 legend
conditions produced a total of 1,280 trials, within
subject. Trials were blocked by colormap configuration
(hotspot/scrambled), and block order was balanced
between subjects.

Procedure
Participants were told that they would see colormaps

representing alien animal sightings on a distant planet,
Sparl. Each map would have a legend, and sometimes
greater amounts of sightings would be represented at
the top of the legend and sometimes greater would be
represented at the bottom. They would see many of
these colormaps showing data from different locations
on the planet. On each trial, their task would be to look
at the colormap and the legend and decide whether
there were more sightings in regions on the left or
right side of the map and to respond by pressing the
corresponding arrow key. They were asked to be as fast
as possible while maintaining their accuracy. They were
told that they would hear a tone each time they made
an error, and they would be notified of their percent
accuracy periodically.

Prior to the start of the experiment, participants
were shown examples of colormaps to get an overview
of the types of stimuli they would encounter. Then,
they completed 20 practice trials that were randomly
selected from the set of all possible conditions. During
the practices and in the experiment, each trial began
with a 500-ms blank gray screen followed by an
experimental display with a colormap and legend. The
colormap and legend remained on the screen until the
participants responded. During the experiment, the
colormaps were presented using a blocked randomized
design: All 32 possible conditions were presented (2
hotspot lightnesses [dark or light] × 2 hotspot sides
[left or right] × 2 color scales [Viridis or Autumn] ×
4 legend conditions) in a random order before going on
to the next block. Within each block, we randomized
which colormap images (given their underlying data
sets) were assigned to each of the 32 conditions. There
were 20 of these blocks of 32 trials to accommodate all
20 underlying data sets used to generate the colormaps.
Participants were notified of their accuracy after each

set of 20 trials, and they were informed when they
completed 25%, 50%, and 75% of the trials.

Results and discussion

We prepared RTs for analysis for each participant
by eliminating trials with errors, calculating the mean
and standard deviation across all remaining trials,
and pruning trials with RTs that were ± 2 standard
deviations from the mean. We then calculated the
mean RT across all remaining trials out of 20 for
each of the experimental conditions and averaged
over colormaps that were left/right reflections of
each other. The code used to process the data and
the data sets for all experiments can be found at
https://github.com/SchlossVRL/colormaps.

In the following sections, we first present results for
the hotspot configurations, followed by results for the
scrambled configurations. In the main text, we focus
on effects of encoded mapping and hotspot lightness
to address our main research questions and effects of
color scale to test generalizability. Results involving
legend text position and block order can be found in the
Supplementary Material.

Hotspot configurations
Figure 5A shows mean RTs for the hotspot

configurations, plotted in the same manner as the
predictions in Figure 2 (see Supplementary Figure S1
for data separated by legend text position). We analyzed
the data using a mixed-design analysis of variance
(ANOVA) with four within-subject factors (2 encoded
mappings × 2 hotspot lightnesses × 2 color scales × 2
legend text positions) and one between-subject factor
(2 block orders). Table 1 shows effects involving
variables illustrated in Figure 5A, and Supplementary
Table S1 shows the full set of results.

Addressing our main question, the pattern of RTs
in Figure 5A resembles the dark-is-more bias only
prediction (Figure 2A), with faster RTs for dark-more
encoding, regardless of hotspot lightness. These
observations are supported by a main effect of encoded
mapping and no interaction between encoded mapping
and hotspot lightness (Table 1).

Although this pattern was apparent for both Autumn
and Viridis color scales, color scale did have an effect.
RTs were overall faster for Autumn than Viridis,
consistent with a prior report that RTs were fastest for
Autumn (Schloss et al., 2019). This difference may be
related to Autumn having less color variability than
Viridis. There was also an interaction between color
scale and encoded mapping, such that the difference
between dark-more encoding and light-more encoding
was greater for Autumn than Viridis. This interaction
may too be explained by the reduced color variability
in Autumn. Reduced color variability could make it
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Hotspot configurations Scrambled configurations

Source F p η2
p F p η2

p

Mapping 36.48 *** 0.386 55.99 *** 0.491
HSLightness 0.00 0.993 0.000 14.39 *** 0.199
Colors 10.31 0.002** 0.151 9.46 0.003** 0.140
Mapping * HSLightness 1.96 0.167 0.033 36.34 *** 0.385
Mapping * Colors 16.80 *** 0.225 8.99 0.004** 0.134
HSLightness * Colors 1.27 0.264 0.021 1.17 0.284 0.020
Mapping * HSLightness * Colors 0.08 0.776 0.001 0.21 0.649 0.004

Table 1. Results of a mixed-design ANOVA comparing encoded mapping (Mapping) × hotspot lightness (HSLightness) × color scale
(Colors) × legend text position (LegText) × testing order (Order) for hotspot configurations and scrambled configurations
(Experiment 1). Degrees of freedom for all tests were (1, 58). **p < .01, ***p < .001. Results of the full analysis (including LegText
and Order) are in Supplementary Table S1.
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Figure 5. Mean RTs for the (A) hotspot configurations and (B)
scrambled configurations from Experiment 1. Black bars
represent dark-more encoding (D+) and white bars represent
light-more encoding (L+). Bars are grouped according to
hotspot lightness (or scrambled hotspot lightness) (x-axis). Data
are separated by the Autumn and Viridis color scales.
Conditions in which the colors in the hotspot map to larger
quantities are indicated by bold text (i.e., D+ when the
hotspots are dark and L+ when hotspots are light). Error bars
represent standard errors of the means using the Cousineau
(2005) adjustment to account for overall differences in RT at the
subject level.

especially easy to interpret colormaps when the encoded
mapping matches the inferred mapping (e.g., encoded
mapping aligns with the dark-is-more bias).

Scrambled configurations
We included scrambled configurations in this

experiment because they were similar to the grid-like
configurations in Schloss et al. (2019) (where robust a
dark-is-more bias was found) and matched the statistics
in the underlying data used to construct the hotspot
configurations. We planned to use results from the
scrambled configurations as a basis of comparison
in case we observed widely different results for the
hotspot configurations. As described above, the hotspot
configuration results conformed with prior evidence for
a dark-is-more bias, but we still discuss the scrambled
configuration results here.

We analyzed RTs for the scrambled configurations
in Figure 5B using the same mixed-design ANOVA as
for the hotspot configurations, with four within-subject
factors (2 encoded mappings × 2 hotspot lightnesses
× 2 color scales × 2 legend text positions) and one
between-subject factor (2 block orders); see Table 1.
Recall that scrambling the underlying data within pairs
of columns eliminated the hotspots but preserved the
left/right differences in lightness of the colormaps.
“Hotspot lightness” refers to the lightness of the
hotspots before they were scrambled, so we call it
“scrambled hotspot lightness” for the scrambled
configurations hereafter.

Similar to the hotspot configurations
in Figure 5A, Figure 5B shows a dark-is-more
bias for scrambled configurations, with faster RTs for
dark-more encoding than light-more encoding (main
effect of encoded mapping in Table 1). However, there
was an unexpected effect of scrambled hotspot lightness
and an encoded mapping × scrambled hotspot
lightness interaction. The effect of scrambled hotspot
lightness revealed faster RTs when the scrambled
hotspot was light, and the interaction revealed a greater
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difference between dark-more and light-more encoded
mapping when the hotspot was light.

We had expected that scrambling the hotspots would
result in no differences between dark hotspot and light
hotspot images. However, in many of the scrambled
images, the region previously containing the hotspot
appeared to occupy less than half of the image. For
example, if the hotspot was on the left and was light,
the left ∼1/3 of the image appeared light biased, and
the right ∼2/3 of the image appeared dark biased.
Thus, effects concerning scrambled hotspot lightness
may be related to perceived region size and point to a
potential “larger-is-more” bias (i.e., inference that the
colors in larger regions map to larger quantities). Yet,
it is unclear why a region size bias would occur for the
scrambled images and not the hotspot images, given
that their region sizes were parallel. We did not design
the stimuli to test for possible region size biases, and
our discussion of these results is speculative. Future
work is needed to understand these effects, but that is
beyond the scope of the present study.

We also observed effects involving color scale, similar
to results for the hotspot configurations. RTs were
faster for Autumn than Viridis, and this difference
was driven by faster RTs for Autumn than Viridis for
dark-more encoding and little difference for light-more
encoding (encoded mapping × color scale interaction).
Again, these effects involving color scale could suggest
that less color variability might lead to faster RTs when
the encoded mapping matches the inferred mapping.

The key finding in Experiment 1 was a robust dark-is-
more bias for hotspot configurations, without evidence
for a hotspot-is-more bias. This result challenged
Schott’s (2010) prediction that hotspot spatial structure
would dominate people’s interpretations of colormaps.
Surprised by this result, we considered possible
explanations for why the hotspot had little effect. First,
the hotspot was an unreliable cue to the locus of larger
quantities within our experimental paradigm. On 50%
of the trials, the encoded mapping specified that the
color in the hotspot mapped to “Greater,” and on 50%
of trials, it mapped to “Fewer.” These trial statistics
may violate statistics of real-world visualizations. If
hotspots tend to signal larger quantities in real-world
visualizations as Schott (2010) suggested, participants
might have learned to ignore the hotspot. We note,
however, that the dark-is-more bias occurred even
though encoded mapping was also an unreliable cue
(i.e., on 50% of trials, there was dark-more encoding,
and on 50%, there was light-more encoding). These
results suggest that participants may be able to ignore
the unreliable spatial cues but not unreliable color
cues. Second, although we tried to make the hotspots
visually pronounced in constructing our colormaps,
it is possible that the participants did not detect the
hotspot structure. We address both of these possibilities
in Experiment 2.

Experiment 2

In Experiment 2, we tested whether hotspots
influenced the interpretations of colormaps if hotspots
were a more reliable cue to the locus of larger quantities.
We used the same basic paradigm as in Experiment 1
but altered the distribution of trials such that the
lightness of the region within the hotspot mapped to
larger quantities on 77% of the trials (as opposed to
50% in Experiment 1). We also included an additional
hotspot localization task at the end of the experiment
to check that participants could perceive hotspots in
the colormap images.

Methods

Participants
The participants were 35 undergraduates at

the University of Wisconsin–Madison (mean age
= 19.29, 16 females, 19 males) who participated
for extra credit in their introductory psychology
course. We analyzed data from 30 participants,
excluding 3 whose overall accuracy was less than
90%, 1 who was color deficient, and 1 who did not
complete the experiment. The rest of the participants
had normal color vision, and all gave informed
consent.

Design, displays, and procedure
All participants completed two tasks: the colormap

interpretation task from Experiment 1, followed by a
new, hotspot localization task. The design, displays, and
procedure for the colormap interpretation task were
the same as in Experiment 1 with two exceptions. First,
the participants only completed trials for the hotspot
configurations (not the scrambled configurations).
Second, we altered the distribution of trials such that
the hotspot lightness mapped to “more” on 77% of the
trials and the surround lightness mapped to “more”
on 23% of the trials, using the following procedure.
Recall that in Experiment 1, there were 20 underlying
data sets that each produced four colormap images for
each color scale (2 hotspot lightnesses [dark or light]
× 2 hotspot positions [left or right]). Each colormap
image appeared four times so it could be paired with
four different legend conditions: 2 encoded mappings
(dark-more or light-more) × 2 legend text positions
(Greater-high or Greater-low). In Experiment 2, we
used this same design for 6 of the 20 underlying data
sets, and we refer to these as the “balanced cue images.”
For the other 14 underlying data sets, we only presented
trials in which the hotspot was “more.” To do so, we
paired dark hotspot images only with legends that
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had dark-more encoding and light hotspot images
only with legends that had light-more encoding. For
these colormap images, the spatial cue to the hotspot
and the color-quantity mappings were redundant cues
to the locus of larger quantities. We refer to these as
the “hotspot-more images.” This design produced
a total of 416 trials. The 20 practice trials were all
hotspot-more trials to help build the expectation
that the hotspot was a reliable cue at the start of the
experiment.

In the hotspot localization task, participants
saw each of the 160 hotspot colormap images
four times, one at a time in a random order (640
trials). No legend was present. Participants were
told that each colormap would contain a hotspot
of concentric regions, similar to what they would
see on a weather map showing the center of a
storm. Their task would be to look at the colormap
and indicate whether the hotspot appeared on the
left or right side by pressing the corresponding
arrow key. During the instructions, they were
shown eight example colormaps and were asked
to point to the side that had the hotspot. This was
done to ensure that the participant understood
the task. If they asked questions about where the
hotspot was, the experimenter reminded them of
the weather map example and told them to use
their best judgment. The participants were notified
when they completed 25%, 50%, and 75% of the
trials.

Results and discussion

We prepared RTs for analysis using the same
procedure as in Experiment 1. One participant did not
have any valid trials for one condition after pruning
for errors and RT outliers, so we replaced that missing
cell with that participant’s mean RT for all the other
conditions.

Figure 6A shows the mean RTs for the balanced cue
images, which appeared in equal amounts of trials with
legends that specified the color in the hotspot mapped
to “Greater” versus “Fewer.” Figure 6B shows mean
RTs for the hotspot-more images, which only appeared
with legends that specified that the color in the hotspot
mapped to “Greater.” Thus, the trials that produced
the data in Figure 6A are comparable to Figure 5A in
Experiment 1, but trials in Figure 6A were presented
in the context of an overall trial structure in which the
colors in hotspots were biased to map to “Greater.”
We analyzed the data for the balanced cue images
and hotspot-more images using separate analyses. We
include the data separated by legend text position and
corresponding statistical results involving legend text in
the Supplementary Material (Supplementary Figure S2,
Supplementary Table S2).
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Figure 6. Mean RTs from Experiment 2 for (A) balanced cue
images and (B) hotspot-more images, separated for dark-more
encoding (D+, black bars) and light-more encoding (L+, white
bars) depending on whether the hotspots were dark or light
(x-axis). Data are separated by the Autumn and Viridis color
scales. Conditions in which the colors in the hotspot map to
larger quantities are indicated by bold text (i.e., D+ when the
hotspots are dark and L+ when hotspots are light). Error bars
represent standard errors of the means using the Cousineau
(2005) adjustment to account for overall differences in RT at the
subject level.

Balanced cue images
We analyzed the data in Figure 6A using a four-way

repeated-measures ANOVA (2 encoded mappings
× 2 hotspot lightnesses × 2 color scales × 2 legend
text positions). This was the same as in Experiment 1
except for no between-subject factor of testing order.
In contrast with Experiment 1 (Figure 5A), the results
in Figure 6A resemble the predicted pattern if there
is both a dark-is-more bias and hotspot-is more bias
(Figure 2C), with faster RTs for dark-more encoding
for dark hotspots but not for light hotspots. These
observations are supported by a main effect of encoded
mapping, an encoded mapping × hotspot lightness
interaction (Table 2), and follow-up comparisons within
each hotspot lightness level. For dark hotspots, where
the dark-is-more bias and hotspot-is-more bias were
compatible, RTs were faster for dark-more encoding
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Balanced cue images Reliable cue images

Source F p η2
p F p η2

p

Mapping 30.50 *** 0.513 8.92 0.006** 0.235
HSLightness 3.27 0.081 0.101
Colors 4.85 0.036* 0.143 4.83 0.036* 0.143
Mapping * HSLightness 31.04 *** 0.517
Mapping *Colors 0.69 0.412 0.023 0.59 0.447 0.020
HSLightness * Colors 1.04 0.317 0.035
Mapping * HSLightness * Colors 0.20 0.662 0.007

Table 2. Results of a repeated-measures ANOVA comparing encoded mapping (Mapping) × hotspot lightness (HSLightness) × color
scale (Colors) × legend text position (LegText) for balanced cue images and the same analysis but without hotspot lightness for
hotspot-more images (see Experiment 2 text for details). Degrees of freedom for all tests were (1, 29). *p < .05, **p <.01,
***p < .001. Results of the full analysis (including LegText) are in Supplementary Table S2.

than light-more encoding, F(1, 29) = 57.79, p < 0.001,
η2
p = .666. For light hotspots, where the two biases

conflicted, there was no difference between dark-more
and light-more encoding (F < 1). This suggests that
the conflicting biases canceled each other out, which
may indicate that the strength of the dark-is-more
bias and the hotspot-is-more bias were equated in this
experiment.

Why did hotspot lightness interact with encoded
mapping in Experiment 2 when there was no such
interaction in Experiment 1? This difference can be
explained by whether hotspots were a reliable cue to
the locus of larger quantities in the global structure
of the experiment. In Experiment 1, hotspots were an
unreliable cue over all trials. In Experiment 2, hotspots
were an unreliable cue within the balanced cue image
trials reported on above, but those trials were embedded
in a global experiment structure in which hotspots were
a reliable cue to larger quantities.

As in Experiment 1, there was an effect of color
scale with faster RTs for Autumn than Viridis, but
unlike Experiment 2, color scale did not interact with
encoded mapping (Table 2). Comparing Autumn and
Viridis in Figure 6A, there may be a tendency for the
hotspot-is-more bias to dominate the dark-is-more
bias for Viridis (i.e., faster RTs for light-more encoding
for light hotspots), but there was not a significant
three-way interaction between encoded mapping,
hotspot lightness, and color scale. We return to this
issue in Experiments 3 and 4.

Hotspot-more images
We analyzed the data for the hotspot-more images

using a three-way repeated-measures ANOVA (2
encoded mappings × 2 color scales × 2 legend text
positions); see Table 2. Hotspot lightness was not
included as a factor because it was redundant with
encoded mapping (i.e., dark-more encoding meant

the hotspot was dark, and light-more encoding meant
the hotspot was light). As shown in Figure 6B and
supported by a main effect of encoded mapping, RTs
were faster when hotspots were dark with dark-more
encoding than when they were light with light-more
encoding. Therefore, it was easier to interpret colormaps
when hotspots were dark than when they were light,
even when the hotspot mapped to larger quantities for
both sets of images and the hotspot was a reliable cue.
Again, RTs were faster for Autumn than Viridis.

Hotspot localization
In the hotspot localization task, participants saw

each colormap image (without a legend) and indicated
which side had the hotspot (left or right). We coded
responses for each trial such that 1 = correct and 0 =
incorrect and averaged over all trials for all participants
to determine the overall accuracy. The mean was 0.89,
indicating that participants could perceive the locations
of the hotspots. We also examined mean accuracy
for each of the 20 underlying data sets (averaging
over color scale, hotspot side, and exact replications).
The range was from 0.86 to 0.92, suggesting that
participants could identify the hotspot for all colormap
images.

We then examined the possibility that hotspots
were easier to detect in colormaps using Viridis than
Autumn, given that Viridis has greater lightness
and hue contrast. We pruned the RTs for hotspot
localization using the same pruning procedure
as before but averaged the remaining data over
colormaps, left/right positions of the hotspot, and
exact replications in one step. The mean RTs are shown
in Figure 7A, separated by color scale and by hotspot
lightness.

We analyzed the data using a two-way repeated-
measures ANOVA (2 color scales × 2 hotspot
lightnesses). There was no effect of color scale, F(1, 29)
= 1.17, p = 0.287, η2

p = .039, but there was an effect
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Figure 7. Mean RTs for the hotspot localization task in (A) Experiment 2, (B) Experiment 3, and (C) Experiment 4. Data are plotted
separately for Autumn and Viridis in Experiment 2 and for Hot and Viridis in Experiments 3 and 4 for dark hotspots (dark gray bars)
and light hotspots (light gray bars). Error bars represent standard errors of the means using the Cousineau (2005) adjustment to
account for overall differences in RT at the subject level.

of hotspot lightness, F(1, 29) = 7.60, p = 0.010, η2
p =

.208, and a color scale × hotspot lightness interaction,
F(1, 29) = 17.36, p < 0.001, η2

p = .375. Follow-up
comparisons of hotspot lightness within each color
scale indicated that participants took longer to detect
dark hotspots than light hotspots for Autumn, F(1, 29)
= 22.09, p < 0.001, η2

p = .432, whereas there was no
significant difference for Viridis (F < 1). Thus, lower
contrast in the Autumn color scale may have made
hotspots harder to detect but only when hotspots were
dark. Based on the results of this experiment, one might
conclude that it is easiest to interpret colormaps when
hotspots are dark and the legend specifies dark-more
encoding (Figure 6), but it is harder to detect hotspots
when they are dark (Figure 7A). However, as we will
see in Experiment 3, the challenge in detecting dark
hotspots is mitigated when the color scale has higher
contrast.

In summary, Experiment 2 provides evidence for
both a dark-is-more bias and a hotspot-is-more
bias when hotspots were a reliable cue to the locus
of larger quantities. RTs were faster for dark-more
encoding when the hotspot was dark, but this difference
diminished when the hotspot was light, suggesting
these biases work together when the hotspot is dark
but cancel each other when the hotspot is light.
Still, for the hotspot-more images, where the legend
always specified the hotspot was more, responses
were reliably faster when the hotspot was dark. These
results suggest that color-based biases still influence
interpretability, even when there are clear spatial cues to
“more.”

This experiment also demonstrated that hotspots
were harder to detect for the Autumn color scale when
hotspots were dark. It is possible that hotspots would
have a greater dampening effect on the dark-is-more
bias if the hotspots were easier to detect. We tested this

hypothesis in Experiment 3 by replacing the Autumn
color scale with the higher-contrast “Hot” color scale.

Experiment 3

This experiment examined whether making hotspots
more visually pronounced in colormaps would reduce
the dark-is-more bias when it conflicted with the
hotspot-is-more bias. We made the hotspots more
pronounced by replacing the Autumn color scale (red
to yellow) with the “Hot” color scale that had more
lightness contrast (Figure 4). The hot color scale is
similar to Autumn but is appended with the endpoints
of black and white, such that it varies from black to
red to yellow to white. Otherwise, Experiment 3 was
identical to Experiment 2.

Methods

Participants
The participants were 35 undergraduates at the

University of Wisconsin–Madison (mean age = 19.34,
25 females, 10 males) who participated for extra credit
in their introductory psychology course. We analyzed
data from 30 participants, excluding 4 whose overall
accuracy was less than 90% and 1 who did not complete
the experiment. All had normal color vision and gave
informed consent.

Design, displays, and procedure
The design, displays, and procedure were the same

as Experiment 2, except the color scales were Hot and
Viridis instead of Autumn and Viridis (Figure 4).

Downloaded from jov.arvojournals.org on 01/03/2021



Journal of Vision (2020) 20(12):7, 1–20 Sibrel, Rathore, Lessard, & Schloss 13

1.05

1.10

1.15

1.20

1.25

1.30

M
ea

n 
R

T
 (

s)

Hot Viridis

1.05

1.10

1.15

1.20

1.25

1.30

M
ea

n 
R

T
 (

s)

Hot Viridis

D+ L+ D+ L+
DarkHotspot: Light

D+ L+ D+ L+
Dark Light

D+ L+
DarkHotspot: Light

D+ L+
Dark Light

A. Balanced Cue Images

B. Hotspot-More Images

Figure 8. Mean RTs from Experiment 3 for (A) balanced cue
images and (B) hotspot-more images, plotted in the same
manner as in Figure 6.

Results and discussion

We prepared RTs for analysis as in Experiments 1
to 2 and analyzed the data in Figure 8 using the same
repeated-measures ANOVAs as in Experiment 2. We
include the data separated by legend text position and
corresponding statistical results involving legend text in
the Supplementary Material (Supplementary Figure S3,
Supplementary Table S3).

Balanced cue images
We predicted that replacing Autumn (lower contrast)

with Hot (higher contrast) in this experiment would
lead to faster RTs for dark-more encoding for dark
hotspots and faster RTs for light-more encoding for
light hotspots (Figure 2B). If so, that would indicate
that increasing lightness contrast between the hotspot
and the surround would make the hotspot-is-more bias
strong enough to override the dark-is-more bias.

As shown in Figure 8A and Table 3, encoded
mapping did indeed interact with hotspot lightness.
Separate analyses for each hotspot lightness indicated
that RTs were faster for dark-more encoded mapping
for dark hotspots, F(1, 29) = 34.79, p < 0.001, η2

p =
.545, and RTs tended to be faster for light-more encoded

mapping for light hotspots, but this difference was
not significant, F(1, 29) = 3.47, p = 0.073, η2

p = .107.
Thus, these results are similar to Experiment 2. From
the pattern in Figure 8A, it appeared that there might
be a greater tendency for the hotspot-is-more bias to
override the dark-is-more bias for Hot than for Viridis,
but this three-way interaction was not significant
(Table 3). Thus, making hotspots more pronounced by
increasing contrast in the color scale was not sufficient
to significantly override the dark-is-more bias when
hotspots were light. Unlike Experiments 1 and 2, there
were no effects involving color scale, now that we
replaced Autumn with Hot, likely because Hot is better
matched with Viridis in terms of color variability.

Hotspot-more images
A main effect of encoded mapping indicated that

RTs were faster when hotspots were dark than when
they were light. There was no effect of color scale or
color scale × encoded mapping interaction. As in
Experiment 2, it was easier to interpret colormaps when
hotspots were dark than when they were light, even
when the hotspot mapped to larger quantities for both
sets of images and the hotspot was a reliable cue.

Hotspot localization
We coded the hotspot localization data and pruned

RTs in the same way as in Experiment 2. Overall
accuracy was 0.95 and the range was from .93 to
.96. Figure 7B shows the mean RTs for each color scale
and hotspot lightness.

We conducted a mixed-design ANOVA to determine
whether the hotspots were easier to detect for colormaps
generated using Hot (Experiment 3) compared with
Autumn (Experiment 2). The within-subject factors
were color scale (“warm” vs. Viridis) and hotspot
lightness (dark vs. light), and the between-subject
factor was experiment (Experiment 2 vs. Experiment 3).
We use “warm” to refer to Autumn in Experiment 2
and Hot in Experiment 3 in this overall ANOVA, but
we compare Autumn and Hot in a separate analysis
below. There were no overall effects of color scale,
hotspot lightness, or experiment (Fs < 1.18), but there
were two-way interactions between color scale and
experiment, F(1, 58) = 6.40, p = 0.014, η2

p = .099, and
hotspot lightness and experiment, F(1, 58) = 9.16,
p = 0.004, η2

p = .136, and a three-way interaction
between color scale, hotspot lightness, and experiment,
F(1, 58) = 52.86, p < 0.001, η2

p = .477.
To understand the three-way interaction, we

separated the data by color scale, where the
Viridis analysis compared the exact same images
in Experiments 2 and 3, and the “warm” analysis
compared Autumn (Experiment 2) and Hot
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Balanced cue images Reliable cue images

Source F p η2
p F p η2

p

Mapping 9.34 0.005** 0.244 14.45 0.001** 0.333
HSLightness 2.06 0.162 0.066
Colors 2.20 0.149 0.070 0.85 0.364 0.029
Mapping * HSLightness 37.50 *** 0.564
Mapping * Colors 0.29 0.594 0.010 0.59 0.448 0.020
HSLightness * Colors 0.00 0.951 0.000
Mapping * HSLightness * Colors 0.16 0.691 0.006

Table 3. Results of a repeated-measures ANOVA comparing encoded mapping (Mapping) × hotspot lightness (HSLightness) × color
scale (Colors) × legend text position (LegText) for balanced cue images and the same analysis but without hotspot lightness for
hotspot-more images (Experiment 3). Degrees of freedom for all tests were (1, 29). **p < .01, ***p < .001. Results of the full analysis
(including LegText) are in Supplementary Table S3.

(Experiment 3). For Viridis, there were no significant
effects (all Fs < 1.09). For Autumn/Hot, there was no
effect of experiment, F(1, 58) = 2.03, p = 0.160, η2

p =
.034, or hotspot lightness (F < 1), but there was an
Experiment × hotspot lightness interaction, F(1, 58)
= 35.08, p < 0.001, η2

p = .377. Comparing Figure 7A
and Figure 7B, it can be seen that RTs were faster for
dark hotspots using the Hot color scale (Experiment 3)
than the Autumn color scale (Experiment 2), F(1, 58) =
9.24, p = 0.004, η2

p = .137, and there was no difference
for light hotspots (F < 1). Thus, we can conclude
that by replacing Autumn with Hot in Experiment 3,
we did make hotspots more pronounced, at least for
dark hotspots that were the most difficult to detect in
Experiment 2.

We now return to the concern in Experiment 2,
that although it is easier to interpret colormaps when
hotspots were dark, it was harder to detect hotspots
when they were dark, at least for the Autumn color
scale. In Experiment 3, we see the reverse pattern for
Hot (Figure 7B), where it was actually easier to find
hotspots when they were dark than when they were
light, F(1, 29) = 13.37, p = 0.001, η2

p = .315. This means
that it was easier to find hotspots in colormaps that
were easier to interpret.

The goal of this experiment was to determine
whether the hotspot-is-more bias would override
the dark-is-more bias if we made hotspots more
pronounced by using a color scale with greater contrast
(i.e., Hot instead of Autumn). When the hotspot
was dark, both biases could work together, so the
critical test was to compare encoded mappings when
hotspots were light and the biases conflicted. There
was a nonsignificant trend for the hotspot-is-more
bias to dominate the dark-is-more bias, as revealed by
marginally faster RTs for light-more encoding than
dark-more encoding when the hotspot was light. Still,
for the hotspot-more images, responses were reliably
faster when the hotspot was dark, which suggests a

benefit of using dark-more encoding with dark hotspots
for hotspot data visualizations.

Experiment 4

In Experiment 3, we found a trend for the
hotspot-is-more bias to override the dark-is-more bias
when hotspots were light, but this difference was not
significant. In Experiment 4, we attempted to further
bolster the effect of the hotspot-is-more bias by making
the hotspot even more pronounced. We did so by
reducing the noise used to produce the hotspot images,
so the location of the hotspot was even more distinct
(Figure 4). Otherwise, Experiment 4 was identical to
Experiment 3.

Methods

Participants
The participants were 35 undergraduates at the

University of Wisconsin–Madison (mean age = 18.62,
23 females, 12 males) who participated for extra credit
in their introductory psychology course. We analyzed
data from 30 participants, excluding 4 whose overall
accuracy was less than 90% and 1 who was color
deficient. All the other participants had normal color
vision, and all gave informed consent.

Design, displays, and procedure
The design, displays, and procedure were the

same as in Experiment 3, except we regenerated the
underlying data sets such that they had less noise
(Figure 4). We reduced the noise strength parameter
for generating the Gaussian noise from 8 to 5 (see
https://github.com/SchlossVRL/colormaps). We created
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Figure 9. Mean RTs from Experiment 4 for (A) balanced cue
images and (B) hotspot-more images, plotted in the same
manner as in Figures 6 and 8.

the colormap images from the first 20 underlying data
sets generated by the algorithm.

Results and discussion

We prepared RTs for analysis using the same
procedure as in Experiments 1 to 3 and analyzed the
data using the same repeated-measures ANOVAs as in
Experiments 2 and 3. We include the data separated by
legend text position and corresponding statistical results
involving legend text in the Supplementary Material
(Supplementary Figure S4, Supplementary Table S4).

Balanced cue images
The results of this experiment provide the first

evidence that a hotspot-is-more bias can override the
dark-is-more bias but only for the Hot color scale. As
shown in Figure 9A, the pattern for the Hot color scale
resembles the hotspot-only prediction (Figure 2B),
and the pattern for the Viridis color scale resembles
the dark-is-more and hotspot-is-more prediction
(Figure 2C, similar also to Experiments 2 and 3). This
difference in patterns between color scales is supported
by a three-way interaction of encoded mapping ×

hotspot lightness × color scale (Table 4). Therefore,
we broke down the analyses by hotspot lightness as in
Experiments 2 and 3 but also examined effects involving
color scale.

When hotspots were dark, RTs were faster for
dark-more encoded mapping, F(1, 29) = 37.89, p <
0.001, η2

p = .566, and encoded mapping did not interact
with color scale (F < 1). When hotspots were light,
there was no main effect of encoded mapping, F(1, 29)
= 1.74, p = 0.197, η2

p = .057, but encoded mapping
interacted with color scale, F(1, 29) = 15.92, p < 0.001,
η2
p = .354. Thus, within the light hotspot condition,

we further compared encoded mappings within each
color scale. For Hot, RTs were significantly faster for
light-more encoding than dark-more encoding, F(1, 29)
= 17.46, p < 0.001, η2

p = .376, but for Viridis, there was
no significant difference, F(1, 29) = 3.42, p = 0.075,
η2
p = .106.
The difference between Hot and Viridis may be

due to hotspots being more pronounced in colormaps
constructed with the Hot color scale, given that Hot has
greater lightness contrast (black to white) than Viridis
(dark blue to light yellow, where dark blue is lighter
than black, and light yellow is darker than white). These
results suggest that under the condition in which the
hotspot was most pronounced—highest color contrast
and low noise in the image—the hotspot-is-more bias
overrode the dark-is-more bias.

Hotspot-more images
When comparing cases in which the hotspot always

represented larger quantities, RTs were faster for dark-
more encoding than light-more encoding, and there
was no interaction with color scale (Figure 9B, Table 4).
This means that even though the hotspot-is-more bias
dominated the dark-is-more bias for Hot (Figure 9A),
there is still is a benefit of having dark hotspots over
light hotspots when hotspots represent larger quantities.

Hotspot localization
We coded the hotspot localization data and RTs

in the same way as in Experiments 2 and 3. Overall,
accuracy was 0.97 (range: .93 to .99). To test if reducing
the noise in the images in Experiment 4 made the
hotspots easier to detect, we conducted a three-way
mixed-design ANOVA comparing 2 color scales (Hot
vs. Viridis) × 2 hotspots lightnesses (light vs. dark) ×
2 experiments (Experiment 3 vs. Experiment 4). None
of the effects involving experiment were significant
(all Fs < 1.67), suggesting reducing the noise in the
images did not affect hotspot detection. This may
be because hotspots were already extremely easy
to detect in Experiment 3, so there was no added
benefit of reducing noise. In future work, it would be
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Balanced cue images Reliable cue images

Source F p η2
p F p η2

p

Mapping 16.56 *** 0.364 13.38 0.001** 0.316
HSLightness 4.25 0.048* 0.128
Colors 0.05 0.831 0.002 0.19 0.664 0.007
Mapping * HSLightness 45.54 *** 0.611
Mapping * Colors 6.17 0.019* 0.176 0.30 0.587 0.010
HSLightness * Colors 0.97 0.333 0.032
Mapping * HSLightness * Colors 6.63 0.015* 0.186

Table 4. Results of a repeated-measures ANOVA comparing encoded mapping (Mapping) × hotspot lightness (HSLightness) × color
scale (Colors) × legend text position (LegText) for balanced cue images and the same analysis but without hotspot lightness for
hotspot-more images (Experiment 4). Degrees of freedom for all tests were (1, 29). *p < .05, **p <.01, ***p < .001. Results of the
full analysis (including LegText) are in Supplementary Table S4.

helpful to systematically vary the spatial structure that
determines hotspot salience within a given experiment
to further understand how hotspot salience influences
interpretations of colormaps.

In summary, the results of Experiment 4 suggest that
there are conditions under which the hotspot-is-more
bias can override the dark-is-more bias. When hotspots
are light and especially pronounced (high contrast,
low noise), RTs were faster for light-more encoding
than dark-more encoding. Still, for the hotspot-more
images, responses were reliably faster when the hotspot
was dark, which further supports there being a benefit
of designing hotspot data visualizations to have dark
hotspots with dark-more encoding.

General discussion

The goal of this study was to examine how people’s
interpretations of colormap data visualizations are
influenced by color and spatial structure. Previous
studies have demonstrated evidence for a dark-is-more
bias, in which people infer that darker colors map to
larger quantities (Cuff, 1973; McGranaghan, 1989;
Schloss et al., 2019). However, it was unclear how those
results would generalize to colormaps with strong
data spatial structure, such as hotspots typically found
in weather maps or neuroimaging brain maps. It has
been proposed that when there are hotspots, people
would readily infer that the largest quantities are in the
center of the hotspot (Schott, 2010), which we call a
hotspot-is-more bias.

We investigated whether a hotspot-is-more bias
overrides the dark-is-more bias. In Experiment 1,
we were surprised to find that the dark-is-more bias
dominated any potential hotspot-is-more bias. In
Experiments 2 to 4, we found that a hotspot-is-more
bias emerged when we made hotspots a more reliable
cue to “more” in the trial structure and made the

hotspots more perceptually pronounced. Still, RTs were
faster for dark-more encoding with dark hotspots than
light-more encoding with light hotspots. Thus, the
results suggest that for hotspot colormaps, it is easier to
interpret the data when the hotspot is dark.

This study has furthered the field’s understanding
of the nature of inferred mappings for colormap
visualizations, but several questions remain. Below, we
highlight these questions, many of which were also
raised in Schloss et al. (2019).

Cue reliability

Would the hotspot-is-more bias entirely dominate
the dark-is-more bias if the hotspot was a 100% reliable
cue to the locus of larger quantities? We did not test
this condition because it would have changed the nature
of the task. Participants would probably have learned
that the hotspot was a reliable cue in the experiment
paradigm and ignored the legend. If so, the task would
have been more like the hotspot localization task
than the colormap interpretation task. To address
this question, it would be necessary to use a different
paradigm.

Impact of robust biases that produce small RT
differences

Do RT differences on the order of 100 ms have
meaningful impacts on people’s ability to interpret
information visualizations in real-life settings? Although
many of the results we report in the present study
have medium to large effect sizes, we note that the
differences in RTs between conditions are relatively
small (∼100 ms). Some may argue that such differences
are inconsequential in the grand scheme of interpreting
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information visualizations, especially under unlimited
viewing conditions.

We have two points in response to this critique.
From a theoretical perspective, the results reveal reliable
and reproducible biases people have for mapping
perceptual and conceptual structure, which leads to
interesting questions about how such biases are formed
and why they exist. From a practical perspective, the
∼100-ms differences reported here, where participants
were highly concentrated and motivated to perform
well, might have larger consequences under natural
conditions where there are more distractions. For
instance, imagine sitting in a lecture, and just as the
speaker presents the colormap visualization with the
critical data, you drop your pen. While picking up
your pen, you get a glimpse of your phone and see
that you received a text message from a loved one.
You then regroup from your distractions in time to
get a glimpse of the data while also trying to listen
to the speaker’s description of the results before the
next slide appears. You had only a brief moment to
process the data visualization. Whether you extracted
the meaningful pattern or not may hinge on whether
the encoded mapping matched your expectations,
or you had to do extra work to decipher the legend.
Exploring how laboratory findings scale to real-world
viewing conditions is an interesting avenue for future
work.

Origins of inferred mappings

Where do inferred mappings come from, and why do
people have a dark-is-more bias? Smith and Sera (1992)
suggested mappings between darkness and “more”
could be based in sensory systems, given that young
children exhibit a dark-is-more bias. However, they also
report that adults do not show a reliable dark-is-more
bias and suggest this developmental change is due to
exposure to unsystematic mappings between darkness
and magnitude in language. Although it may seem
contradictory that Smith and Sera (1992) did not find
a reliable dark-is-more bias in adults, when we and
others before us did (Cuff, 1973; McGranaghan, 1989;
Schloss et al., 2019), the types of tasks in these studies
were qualitatively different. Future work is needed to
reconcile these differences and to understand the origins
and developmental trajectory of the dark-is-more
bias.

Some have also argued that the dark-is-more bias
stems from ecological exposure to real-world objects
such as increased ink on a page or other forms of
density (Cuff, 1974; McGranaghan, 1989). Relatedly,
the dark-is-more bias may stem from exposure to
colormap data visualizations with dark-more encoding,
given that it was established as a convention in statistics
in the early 1900s (Palsky, 1999). As discussed in

Schloss et al. (2019), studies with populations who have
not had exposure to colormap data visualization will
be essential for assessing the role of prior exposure to
colormaps on the dark-is-more bias.

Effects of semantic context

How might the dark-is-more bias vary with semantic
context? Efforts have been under way to design
colormaps to fit different types of data (e.g., data about
water vs. foliage) (Samsel, Klaassen, & Rogers, 2018;
Samsel, Turton, Wolfram, & Bujack, 2017), and it is
possible that the dark-is-more bias might be reduced or
reversed for data about content that is inherently light
(e.g., sunshine). It is also possible that the dark-is-more
bias might be influenced by which properties of the data
are of interest. For example, if a colormap represents
response time data and the focus is on which response
times are fastest, people may infer that darker colors
map to faster response times (i.e., smaller amounts of
time). Research is currently in progress to test these
possibilities.

Effects of expertise

How does domain expertise influence inferred
mappings? People’s knowledge about types of
visualizations and knowledge about content in
visualizations can influence how they interpret data
visualizations (for a review, see Shah & Hoeffner,
2002). In the present study, we chose to represent data
about alien animal sightings to prevent participants
from having prior knowledge about the content
of the visualization. Moreover, we tested college
undergraduates who have general knowledge about
colormaps (e.g., from reading weather maps) but are
likely not expert colormap readers. However, it is
possible that domain experts, with knowledge about the
(a) content in colormaps and (b) typical patterns of
data in their field, may rely more on spatial structure in
their data (e.g., hotspots) than inferred color-quantity
mappings when interpreting colormaps. It is also
possible that domain experts who are used to looking
at colormaps with light-more encoded mappings (e.g.,
neuroscientists; see Christen et al., 2013) have developed
a light-is-more bias instead of a dark-is-more bias.
If so, it would be interesting to determine whether
that light-is-more bias is domain specific to their area
of expertise (e.g., neuroimaging) or extends across
domains outside of their area of expertise (e.g., alien
animal sighting maps). If one designs colormaps that
align with the results of the present study but violate
conventions in a particular field, there is a risk that the
encoded mapping will contradict the inferred mappings
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of domain experts, and that could make colormaps
harder to interpret.

This research is part of a larger effort to understand
what factors determine correspondence between
perceptual and conceptual properties in information
visualizations. We have demonstrated that color
and spatial factors interacted in interesting ways to
determine people’s inferred mappings for colormap
data visualizations, and color-based inferred mapping
(i.e., dark-is-more bias) was surprisingly robust when
it conflicted with space-based inferred mapping
(i.e., hotspot-is-more bias). By understanding how
people infer meaning from visual features, it will
be possible to design information visualizations
that are more effective and efficient for visual
communication.

Keywords: visual reasoning, information visualization,
configural processing, perceptual organization, color
cognition
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Footnote
1We used device-dependent RGB coordinates to specify the colormaps
because we aimed to study colormaps that people typically use in real data
visualizations, which are specified using RGB coordinates in software like
MATLAB or packages like Matplotlib and displayed on people’s own
uncalibrated monitors (Schloss et al., 2019). This approach contrasts with
classic color perception studies, in which the goal is to produce color
specified in a device-independent space such that other laboratories can
produce the exact same colors on their monitors.
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