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How should colors be selected so the
graph is as interpretable as possible?

Interpretability depends more on semantic
distance than perceptual distance.
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Figure 1. This study investigated how varying perceptual and semantic distance influenced people’s ability to interpret color palettes.
Left: four example trials from Experiment 2, in which participants reported which bar (left/right) corresponded to the target fruit named
above the graph (either mango or watermelon). No legend was provided, so participants had to rely on their inferred mappings
to complete the task. Right: aggregated results corresponding to the color pairs from the left panel. The colors are labeled with
their correct assignments (see Section 3.2.1 for details) as well as the color names in parentheses (see Table S.1 for coordinates).
Participants had higher mean accuracy when the semantic distance between the pair of colors was greater (a notion we define in
Section 3.2.2), whereas perceptual discriminability had little effect on accuracy when controlling for semantic distance.

Abstract—To interpret information visualizations, observers must determine how visual features map onto concepts. First and foremost,
this ability depends on perceptual discriminability; observers must be able to see the difference between different colors for those colors
to communicate different meanings. However, the ability to interpret visualizations also depends on semantic discriminability, the degree
to which observers can infer a unique mapping between visual features and concepts, based on the visual features and concepts
alone (i.e., without help from verbal cues such as legends or labels). Previous evidence suggested that observers were better at
interpreting encoding systems that maximized semantic discriminability (maximizing association strength between assigned colors and
concepts while minimizing association strength between unassigned colors and concepts), compared to a system that only maximized
color-concept association strength. However, increasing semantic discriminability also resulted in increased perceptual distance, so it
is unclear which factor was responsible for improved performance. In the present study, we conducted two experiments that tested
for independent effects of semantic distance and perceptual distance on semantic discriminability of bar graph data visualizations.
Perceptual distance was large enough to ensure colors were more than just noticeably different. We found that increasing semantic
distance improved performance, independent of variation in perceptual distance, and when these two factors were uncorrelated,
responses were dominated by semantic distance. These results have implications for navigating trade-offs in color palette design
optimization for visual communication.

Index Terms—Visual Reasoning, Information Visualization, Visual Communication, Visual Encoding, Color Perception, Color Cognition

1 INTRODUCTION

In visual communication, designers produce information visualizations
by encoding concepts in visual features, and observers interpret visual-
izations by decoding concepts from visual features [4, 39]. Interpreting
visualizations involves multiple component processes, including (1)
perceiving and identifying important features within a visualization, (2)
mapping those features to the concepts they represent, and (3) deriving
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implications about information represented in the visualization [32].
For example, to interpret visualizations that encode categories using
color (e.g., bar graphs, choropleth maps, transit maps, and recycling bin
signage), observers must perceive and distinguish the colors, determine
how each color in the palette maps to a category, and then use that
mapping to glean knowledge from the visualization (e.g., patterns of
data from bar graphs or choropleth maps, which train to take from a
transit map, or where to discard paper from recycling signage).

Many factors influence interpretability, including (1) characteristics
of visualizations, (2) observers’ knowledge about visualizations, and (3)
observers’ knowledge about content in visualizations (outlined in [32],
with respect to graphs). Here, we focus on how interpretability is in-
fluenced by perceptual characteristics of visualizations that are used to
encode meaning (e.g., colors) and observers’ semantic associations with
those perceptual features. Thus, for present purposes, we operational-
ize “interpretability” as the ability to accurately decode the encoded
mapping. We aim to develop a deeper understanding of how inter-
pretability is influenced by two properties: perceptual discriminability
and semantic discriminability.

1.1 Perceptual discriminability
Perceptual discriminability is the degree to which observers can per-
ceive differences between different visual features (e.g., colors, sizes,
shapes, or textures). Some amount of perceptual discriminability is
necessary because observers cannot decode different meanings from
perceptually identical features [17] (e.g., they must be able to per-
ceive the difference between two shades of blue to decode that those
blues encode different concepts). Thus, visualization research has
emphasized the importance of understanding perceptual discriminabil-
ity [8, 14, 33, 34], including how it varies with mark size [33] and
shape [34]. And, design guidelines have emphasized the importance of
representing categorical information with colors that are well-separated
in color space [12, 14, 32]. If perceptually discriminable features are
accompanied by verbal descriptions specifying the encoded mapping
(e.g., legends or labels), then observers have all the information re-
quired to decode the encoded mapping. This rationale supports using
pre-made color palettes (e.g., Tableau and Colorbrewer palettes [12])
that have been designed to ensure perceptual discriminability. How-
ever, the ability to decode encoded mappings depends on more than
perceptual discriminability and legend reading, as explained below.

1.2 Semantic discriminability
We define semantic discriminability as the degree to which observers
can infer a unique mapping between visual features and concepts,
based on the visual features and concepts alone (i.e., without legends
or labels). For example, if observers are given an unlabeled graph
containing yellow and blue colored bars and are told the graph is about
the concepts banana and blueberry, they could easily infer that yellow
maps to banana and blue maps to blueberry. This is because yellow
and blue are semantically discriminable for the concepts banana and
blueberry. Conversely, it would be more difficult to infer how orangish-
yellow and greenish-yellow map to the concepts banana and lemon
because both colors are similarly associated with both concepts, and
thus less semantically discriminable.

Semantic discriminability might sound similar to interpretability,
but they are distinct constructs. Semantic discriminability concerns
the ability to infer a unique mapping (irrespective of the encoded map-
ping), whereas interpretability concerns the ability to decode the cor-
rect mapping (specified by the encoded mapping). Building on the
banana/blueberry graph example, yellow and blue would be semanti-
cally discriminable colors, regardless of the encoded mapping in the
graph. Observers would infer that yellow maps to banana and blueberry
maps to blue. Now, if the encoded mapping was yellow-banana/blue-
blueberry, the graph would be easy to interpret because the encoded
mapping matched the inferred mapping. But, if the encoded map-
ping was blue-banana/yellow-blueberry (i.e., cross-mapped [7]), the
graph would be harder to interpret because the encoded mapping did
not match the inferred mapping (i.e., Kosslyn’s compatibility princi-
ple [17], Tversky et al.’s congruence principle [37]). Observers are
better at interpreting colors in visualizations when encoded mappings
match inferred mappings, even when there is a clear legend [19, 29].

Based on the examples above, one might conclude that interpretabil-
ity depends only on association strengths of encoded color-concept
pairs. Lin et al. [19] referred to palettes in which colors evoke the con-
cepts they represent as semantically resonant color palettes. However,
interpretability can also be achieved when not all color-concept pairs
are semantically resonant [30], see Section 2.2. Rathore et al. [27]
referred to this more general case as semantically interpretable color
palettes. For simplicity, we use the term interpretability in the present
work to refer to the more general case.

1.3 Perceptual vs. semantic discriminability?
From prior work, it is clear that interpretability hinges on some degree
of perceptual discriminability [3,14,33,34] and interpretability benefits
from semantic discriminability [30]. However, given previous research,
it is currently unknown whether increasing semantic discriminabil-
ity improves interpretability, beyond that which can be explained by
perceptual discriminability. Returning to our banana/blueberry/lemon
examples used so far in this introduction, these examples were intended

to build the intuition for semantic discriminability, but they confounded
perceptual and semantic discriminability. Yellow and blue are both high
in perceptual and semantic discriminability when encoding for the con-
cepts banana and blueberry, and orangish-yellow vs. greenish-yellow
are both low in perceptual and semantic discriminability when encoding
for the concepts banana and lemon (assuming trichromatic color vi-
sion). Similarly, in prior work that suggested semantic discriminability
improved interpretability, colors in the more semantically discriminable
color palette were closer together in color space [30], see Section 2.2.
So, it is unclear if this improvement was due to semantic or perceptual
discriminability. Yet, semantic and perceptual discriminability can vary
independently (Fig. 1), and understanding their independent effects on
interpretability is important for determining how to resolve conflicts
between them when optimizing color palette design.

Likewise, it is also unknown whether increasing perceptual discrim-
inability beyond that which is needed for semantic discriminability
influences interpretability. For two colors to be semantically discrim-
inable, they must be sufficiently perceptually discriminable to tell them
apart. Otherwise, observers could not reliably infer that one color maps
more than another color does to a given concept. Thus, perceptual dis-
criminability might not capture additional variance in interpretability
beyond that which is explained by semantic discriminability.

To address these questions, we tested for independent effects of
perceptual and semantic discriminability on interpretability. The results
will not only provide a deeper understanding about the relative contribu-
tions of perceptual and cognitive factors for visual reasoning, but will
also inform optimal color palette design. Designing effective palettes
for information visualization requires navigating trade-offs between
several, sometimes competing, factors (e.g., perceptual discriminability,
semantic discriminability, name difference, emotional connotation, and
aesthetics) [2, 8, 15, 19, 33]. Understanding the relative contribution of
semantic and perceptual discriminability for interpretability will inform
how to prioritize these factors when conflicts arise.

Contributions. Our study makes the following contributions. First,
we define a metric called semantic distance for operationalizing se-
mantic discriminability. Semantic distance depends on the relative
association strengths between each color and each concept in the con-
text of an encoding system (see Section 3.2). This is unlike perceptual
distance, which only depends on the appearance of the two colors. The
semantic distance between a given pair of colors may be large in the
context of some concepts, but small in the context of other concepts.

Second, we present the results of two experiments that assess how
perceptual distance and semantic distance influence interpretability.
Evidence indicates that both factors can contribute to interpretability,
but semantic distance dominates when the factors conflict. The results
imply that increasing perceptual distance beyond that which is needed
for semantic discriminability can improve interpretability, but when in
conflict, priority should be given to maximizing semantic distance.

2 BACKGROUND

When people interpret information visualizations, they do not sim-
ply absorb the displayed information in a bottom-up fashion. Instead,
they have biases, or expectations, about how visual features map to
meanings, which guide their interpretations. These biases span topics
across the field of information visualization, including graphical percep-
tion [40, 41], visualizing uncertainty [28], and color [6, 19, 22, 29, 30].
Understanding and designing visualizations that align with these biases
will help make visualizations that are easier to interpret [16, 24, 36]. In
cases where this alignment may not be possible (i.e., multiple conflict-
ing biases relevant to a particular visualization), an understanding of
when expectations are violated can guide compensatory design deci-
sions (e.g., extra labeling or verbal descriptions of the visualization).

Here, we focus on understanding expectations about assignments be-
tween colors and concepts for interpreting visualizations about categor-
ical information. However, this discussion should apply to assignments
between other perceptual features and concepts, as long as people have
systematic associations between those features and concepts. In this
section, we first describe how designers use assignment problems to
produce encoded mappings between visual features and concepts. We
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Figure 1. This study investigated how varying perceptual and semantic distance influenced people’s ability to interpret color palettes.
Left: four example trials from Experiment 2, in which participants reported which bar (left/right) corresponded to the target fruit named
above the graph (either mango or watermelon). No legend was provided, so participants had to rely on their inferred mappings
to complete the task. Right: aggregated results corresponding to the color pairs from the left panel. The colors are labeled with
their correct assignments (see Section 3.2.1 for details) as well as the color names in parentheses (see Table S.1 for coordinates).
Participants had higher mean accuracy when the semantic distance between the pair of colors was greater (a notion we define in
Section 3.2.2), whereas perceptual discriminability had little effect on accuracy when controlling for semantic distance.

Abstract—To interpret information visualizations, observers must determine how visual features map onto concepts. First and foremost,
this ability depends on perceptual discriminability; observers must be able to see the difference between different colors for those colors
to communicate different meanings. However, the ability to interpret visualizations also depends on semantic discriminability, the degree
to which observers can infer a unique mapping between visual features and concepts, based on the visual features and concepts
alone (i.e., without help from verbal cues such as legends or labels). Previous evidence suggested that observers were better at
interpreting encoding systems that maximized semantic discriminability (maximizing association strength between assigned colors and
concepts while minimizing association strength between unassigned colors and concepts), compared to a system that only maximized
color-concept association strength. However, increasing semantic discriminability also resulted in increased perceptual distance, so it
is unclear which factor was responsible for improved performance. In the present study, we conducted two experiments that tested
for independent effects of semantic distance and perceptual distance on semantic discriminability of bar graph data visualizations.
Perceptual distance was large enough to ensure colors were more than just noticeably different. We found that increasing semantic
distance improved performance, independent of variation in perceptual distance, and when these two factors were uncorrelated,
responses were dominated by semantic distance. These results have implications for navigating trade-offs in color palette design
optimization for visual communication.

Index Terms—Visual Reasoning, Information Visualization, Visual Communication, Visual Encoding, Color Perception, Color Cognition

1 INTRODUCTION

In visual communication, designers produce information visualizations
by encoding concepts in visual features, and observers interpret visual-
izations by decoding concepts from visual features [4, 39]. Interpreting
visualizations involves multiple component processes, including (1)
perceiving and identifying important features within a visualization, (2)
mapping those features to the concepts they represent, and (3) deriving
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implications about information represented in the visualization [32].
For example, to interpret visualizations that encode categories using
color (e.g., bar graphs, choropleth maps, transit maps, and recycling bin
signage), observers must perceive and distinguish the colors, determine
how each color in the palette maps to a category, and then use that
mapping to glean knowledge from the visualization (e.g., patterns of
data from bar graphs or choropleth maps, which train to take from a
transit map, or where to discard paper from recycling signage).

Many factors influence interpretability, including (1) characteristics
of visualizations, (2) observers’ knowledge about visualizations, and (3)
observers’ knowledge about content in visualizations (outlined in [32],
with respect to graphs). Here, we focus on how interpretability is in-
fluenced by perceptual characteristics of visualizations that are used to
encode meaning (e.g., colors) and observers’ semantic associations with
those perceptual features. Thus, for present purposes, we operational-
ize “interpretability” as the ability to accurately decode the encoded
mapping. We aim to develop a deeper understanding of how inter-
pretability is influenced by two properties: perceptual discriminability
and semantic discriminability.

1.1 Perceptual discriminability
Perceptual discriminability is the degree to which observers can per-
ceive differences between different visual features (e.g., colors, sizes,
shapes, or textures). Some amount of perceptual discriminability is
necessary because observers cannot decode different meanings from
perceptually identical features [17] (e.g., they must be able to per-
ceive the difference between two shades of blue to decode that those
blues encode different concepts). Thus, visualization research has
emphasized the importance of understanding perceptual discriminabil-
ity [8, 14, 33, 34], including how it varies with mark size [33] and
shape [34]. And, design guidelines have emphasized the importance of
representing categorical information with colors that are well-separated
in color space [12, 14, 32]. If perceptually discriminable features are
accompanied by verbal descriptions specifying the encoded mapping
(e.g., legends or labels), then observers have all the information re-
quired to decode the encoded mapping. This rationale supports using
pre-made color palettes (e.g., Tableau and Colorbrewer palettes [12])
that have been designed to ensure perceptual discriminability. How-
ever, the ability to decode encoded mappings depends on more than
perceptual discriminability and legend reading, as explained below.

1.2 Semantic discriminability
We define semantic discriminability as the degree to which observers
can infer a unique mapping between visual features and concepts,
based on the visual features and concepts alone (i.e., without legends
or labels). For example, if observers are given an unlabeled graph
containing yellow and blue colored bars and are told the graph is about
the concepts banana and blueberry, they could easily infer that yellow
maps to banana and blue maps to blueberry. This is because yellow
and blue are semantically discriminable for the concepts banana and
blueberry. Conversely, it would be more difficult to infer how orangish-
yellow and greenish-yellow map to the concepts banana and lemon
because both colors are similarly associated with both concepts, and
thus less semantically discriminable.

Semantic discriminability might sound similar to interpretability,
but they are distinct constructs. Semantic discriminability concerns
the ability to infer a unique mapping (irrespective of the encoded map-
ping), whereas interpretability concerns the ability to decode the cor-
rect mapping (specified by the encoded mapping). Building on the
banana/blueberry graph example, yellow and blue would be semanti-
cally discriminable colors, regardless of the encoded mapping in the
graph. Observers would infer that yellow maps to banana and blueberry
maps to blue. Now, if the encoded mapping was yellow-banana/blue-
blueberry, the graph would be easy to interpret because the encoded
mapping matched the inferred mapping. But, if the encoded map-
ping was blue-banana/yellow-blueberry (i.e., cross-mapped [7]), the
graph would be harder to interpret because the encoded mapping did
not match the inferred mapping (i.e., Kosslyn’s compatibility princi-
ple [17], Tversky et al.’s congruence principle [37]). Observers are
better at interpreting colors in visualizations when encoded mappings
match inferred mappings, even when there is a clear legend [19, 29].

Based on the examples above, one might conclude that interpretabil-
ity depends only on association strengths of encoded color-concept
pairs. Lin et al. [19] referred to palettes in which colors evoke the con-
cepts they represent as semantically resonant color palettes. However,
interpretability can also be achieved when not all color-concept pairs
are semantically resonant [30], see Section 2.2. Rathore et al. [27]
referred to this more general case as semantically interpretable color
palettes. For simplicity, we use the term interpretability in the present
work to refer to the more general case.

1.3 Perceptual vs. semantic discriminability?
From prior work, it is clear that interpretability hinges on some degree
of perceptual discriminability [3,14,33,34] and interpretability benefits
from semantic discriminability [30]. However, given previous research,
it is currently unknown whether increasing semantic discriminabil-
ity improves interpretability, beyond that which can be explained by
perceptual discriminability. Returning to our banana/blueberry/lemon
examples used so far in this introduction, these examples were intended

to build the intuition for semantic discriminability, but they confounded
perceptual and semantic discriminability. Yellow and blue are both high
in perceptual and semantic discriminability when encoding for the con-
cepts banana and blueberry, and orangish-yellow vs. greenish-yellow
are both low in perceptual and semantic discriminability when encoding
for the concepts banana and lemon (assuming trichromatic color vi-
sion). Similarly, in prior work that suggested semantic discriminability
improved interpretability, colors in the more semantically discriminable
color palette were closer together in color space [30], see Section 2.2.
So, it is unclear if this improvement was due to semantic or perceptual
discriminability. Yet, semantic and perceptual discriminability can vary
independently (Fig. 1), and understanding their independent effects on
interpretability is important for determining how to resolve conflicts
between them when optimizing color palette design.

Likewise, it is also unknown whether increasing perceptual discrim-
inability beyond that which is needed for semantic discriminability
influences interpretability. For two colors to be semantically discrim-
inable, they must be sufficiently perceptually discriminable to tell them
apart. Otherwise, observers could not reliably infer that one color maps
more than another color does to a given concept. Thus, perceptual dis-
criminability might not capture additional variance in interpretability
beyond that which is explained by semantic discriminability.

To address these questions, we tested for independent effects of
perceptual and semantic discriminability on interpretability. The results
will not only provide a deeper understanding about the relative contribu-
tions of perceptual and cognitive factors for visual reasoning, but will
also inform optimal color palette design. Designing effective palettes
for information visualization requires navigating trade-offs between
several, sometimes competing, factors (e.g., perceptual discriminability,
semantic discriminability, name difference, emotional connotation, and
aesthetics) [2, 8, 15, 19, 33]. Understanding the relative contribution of
semantic and perceptual discriminability for interpretability will inform
how to prioritize these factors when conflicts arise.

Contributions. Our study makes the following contributions. First,
we define a metric called semantic distance for operationalizing se-
mantic discriminability. Semantic distance depends on the relative
association strengths between each color and each concept in the con-
text of an encoding system (see Section 3.2). This is unlike perceptual
distance, which only depends on the appearance of the two colors. The
semantic distance between a given pair of colors may be large in the
context of some concepts, but small in the context of other concepts.

Second, we present the results of two experiments that assess how
perceptual distance and semantic distance influence interpretability.
Evidence indicates that both factors can contribute to interpretability,
but semantic distance dominates when the factors conflict. The results
imply that increasing perceptual distance beyond that which is needed
for semantic discriminability can improve interpretability, but when in
conflict, priority should be given to maximizing semantic distance.

2 BACKGROUND

When people interpret information visualizations, they do not sim-
ply absorb the displayed information in a bottom-up fashion. Instead,
they have biases, or expectations, about how visual features map to
meanings, which guide their interpretations. These biases span topics
across the field of information visualization, including graphical percep-
tion [40, 41], visualizing uncertainty [28], and color [6, 19, 22, 29, 30].
Understanding and designing visualizations that align with these biases
will help make visualizations that are easier to interpret [16, 24, 36]. In
cases where this alignment may not be possible (i.e., multiple conflict-
ing biases relevant to a particular visualization), an understanding of
when expectations are violated can guide compensatory design deci-
sions (e.g., extra labeling or verbal descriptions of the visualization).

Here, we focus on understanding expectations about assignments be-
tween colors and concepts for interpreting visualizations about categor-
ical information. However, this discussion should apply to assignments
between other perceptual features and concepts, as long as people have
systematic associations between those features and concepts. In this
section, we first describe how designers use assignment problems to
produce encoded mappings between visual features and concepts. We
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then present evidence that observers use assignment inference to decode
encoded mappings when interpreting visualizations.

2.1 Assignment problems for encoding
Assignment problems have been used to create color palettes that op-
timize encodings between visual features and concepts [19, 30]. An
assignment problem is a model for assigning items in one category
(e.g., colors) to items in another category (e.g., concepts) in a manner
that maximizes a total merit score [18, 23]. Assignment problems can
be represented as bipartite graphs, as shown in Fig. 2. The square
nodes are colors and the circular nodes are concepts. Edges are drawn
between each color and each concept. The number on each edge repre-
sents the “merit score” of assigning that particular color to that concept,
represented as x1, . . . ,x4. Merit scores can be calculated using different
methods [19, 30] but the goal is always the same: construct a 1-to-1
assignment between each color and a concept, such that the sum of the
merit scores of assigned color-concept pairs is maximized.

A B

1

x1
x2 x4

x3

2

concepts

colors

A B

1

x1
x2 x4

x3

2

A B

1

x1
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x3
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merit

A B A B A B

ΔS ≈ 1 ΔS ≈ 0 ΔS ≈ .5

Figure 2. Bipartite graphs representing possible assignment problems
between concepts (circles) and colors (squares). The merit of each
pairing is represented by the thickness of edges connecting each color
to each concept. Here, the merit is color-concept association strength.
Plots below each bipartite graph show the relative merit distribution
of each color for each concept, assuming that association strength is
a normally distributed random variable. In all three examples, mean
association strengths satisfy x1 + x4 > x2 + x3, so the outcomes of the
assignment problems are the same: concept A is assigned with color 1
and concept B is assigned with color 2. Black lines indicate the chosen
assignment and gray lines indicate the non-chosen assignment. ∆S
indicates approximate semantic distance for the examples.

Assignment problems are deterministic. When there are two con-
cepts and two colors as in Fig. 2, there are only two possible outcomes
and the outcome is completely determined by the merit scores on each
of the four edges. If the sum of the outer edges is greater than the sum
of the inner edges (x1 + x4 > x2 + x3), then concept A is assigned to
color 1 and concept B is assigned to color 2. If the sum of the inner
edges is greater (x2 +x3 > x1 +x4), then concept A is assigned to color
2 and concept B to color 1. Fig. 2 illustrates bipartite graphs with three
different patterns of merit on the edges, but all three scenarios produce
identical outcomes: concept A is assigned to color 1 and concept B is
assigned to color 2 because the merit scores satisfy x1 + x4 > x2 + x3.
In the left and center bipartite graphs, the solution to the assignment
problem (“global solution”) matches the solution for each concept in
isolation (“local solution”, concept A is more associated with color
1 than color 2, and concept B is more associated with color 2 than
color 1). However, in the rightmost bipartite graph, the local and global
solutions conflict: concept B is more associated with color 1, yet it
is assigned to color 2. This distinction is relevant for discussing how
humans decode encoded mappings (Section 2.2).

2.2 Assignment inference for decoding
When people decode encoded mappings, they use a process similar to
solving an assignment problem, called assignment inference [30]. In as-
signment inference, people estimate the merit of different assignments
based on association strengths between visual features and concepts,
and determine the assignment that maximizes merit. However, unlike
how computers solve assignment problems, human assignment infer-
ence is probabilistic rather than deterministic [30]. Overall, humans can
produce reliable inferences, but their responses are noisy. This noise

can be attributed to uncertainty in the color-concept associations that
serve as input into the assignment problem. In [30], this uncertainty
was built into models that were effective at predicting human responses.

Fig. 2 represents the noise in color-concept associations as distribu-
tions for each color-concept pairing. For each distribution, the mean
corresponds to edge thickness in the bipartite graph. The variability
is assumed to be normal. Assume each time a person does assign-
ment inference, they draw a random value from these distributions
to estimate merit for each edge. When the distributions are far apart
(Fig. 2 left), random draws will consistently result in the same out-
come of the assignment problem. However, when distributions overlap
(Fig. 2 middle), random draws can result in different outcomes of the
assignment problem, which results in more uncertainty in assignment
inference [30]. This is the basis for our semantic distance metric in the
present work (see Section 3.2.2).

Evidence suggests that people perform global assignment inference
when interpreting the meanings of colors in information visualiza-
tions [30]. In some cases, the global solution conflicts with local
solutions (Fig. 2, right). Such conflicts can result in people inferring
that concepts are assigned to their most weakly associated colors, even
when stronger candidate colors exist in the palette. Schloss et al. [30]
first demonstrated this phenomenon using a recycling task: participants
were presented with images of two colored bins, along with a word
describing one “target” concept. There were two possible targets, paper
and trash. When trash was the target and was presented with white
and purple bins, participants were faced with a scenario like in Fig. 2,
right. Trash was more strongly associated with white than with purple
(x3 > x4), but so was paper (x1 > x2), and the association between paper
and white was especially strong. Participants reliably discarded trash
into the purple bin, even though trash was more strongly associated
with white (analogous to blue in Fig. 2, right).

Schloss et al. [30] also assessed methods for calculating merit to gen-
erate the encoded mapping, one that maximized association strength
(isolated merit function) and one that prioritized semantic discrim-
inability over association strength (balanced merit function, although
the term semantic discriminability was not used in [30]). Within both
color palettes, responses were faster and more accurate when the target
concept was more strongly associated with its correct color, but par-
ticipants were more accurate for the balanced palette than the isolated
palette. These results suggest interpretability increases with seman-
tic discriminability. However, in addition to being more semantically
discriminable, colors in the balanced palette were also further apart
in CIELAB space (see Fig. S.1 in the Supplementary Material of
the present paper). Thus, it is unclear if colors in the balanced color
palette were easier to interpret because they were more semantically
discriminable, more perceptually discriminable, or both.

3 APPROACH

In the present study, we assessed the independent effects of semantic dis-
criminability and perceptual discriminability on participants’ interpreta-
tions of bar graph data visualizations. The paradigm was the same as in
Schloss et al. [30], but instead of interpreting colors of unlabeled trash
and recycling bins, participants interpreted colors of unlabeled bars in
a bar graph. On each trial, participants saw a graph containing two
different colored bars, along with a target fruit concept described above
the graph (Fig. 1, left). Their task was to indicate which colored bar, left
or right, corresponded to the target fruit. Within each experiment, par-
ticipants judged all pairwise combinations of eight colors for two fruits
(cantaloupe and strawberry in Experiment 1, mango and watermelon in
Experiment 2). The data from the present experiment and analysis code
are at github.com/SchlossVRL/semantic-discriminability.

We used a previous dataset on color-concept associations from
Rathore et al. [27] to select the colors for the present study (Section
3.1), define accuracy for the present tasks (Section 3.2.1), and quantify
semantic distance (Section 3.2.2). In [27], participants rated association
strengths between each of 12 fruits and each of 58 colors (UW-58
colors), uniformly sampled in CIELAB space (∆E = 25). This distance
should be at least one noticeable difference [33, 34]. Further details on
the methods of [27] are in Supplementary Material of the present paper.
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Figure 3. (A) Color-concept associations and CIELAB coordinates for colors tested in Experiment 1. (A.1) Mean association strength between each
color with the concept labeled at the top of the column (error bars are standard errors of the means. Bar colors indicate the colors that were tested
(see Table S.1 for coordinates). CIELAB coordinates are shown for each color on the (A.2) a*, b* plane and the a*, L* plane (A.3), with the size of the
marks corresponding to association strength with the concept named at the top of the column (same data as in A.1). Dashed ovals enclose the
four colors that were the relatively strong associates with the concept at the top of the column. (B) Same as A, but for the colors and concepts in
Experiment 2. Each plot has eight points, one for each color, but in some cases fewer points are visible due to occlusion on the 2D plane.

3.1 Selecting colors and concepts

We chose the colors and fruit concepts using the mean color-concept
association data from Rathore et al. [27] (see Table S.6 in the Sup-
plementary Material) and color distances in CIELAB space (∆E). In
Experiment 1, we selected eight colors and two fruits to have the fol-
lowing properties. Four colors varied from moderately to strongly
associated with the first fruit while being weakly associated with the
second fruit (Fig. 3A.1, left). The other four colors varied from moder-
ately to strongly associated with the second fruit while being weakly
associated with the first fruit (Fig. 3A.1, right). We generated candidate
colors and fruits using an optimization routine that enforced a minimum
difference in association ratings for the four colors that varied and a
weak association rating for the remaining four colors. This yielded a
list of candidate palettes. We excluded palettes involving fruits that had
colors in their names (blueberry and orange), and this led us to select-
ing cantaloupe and strawberry for our first experiment. The CIELAB
coordinates of these colors are plotted on the a*, b* plane in Fig. 3A.2
and on the a*, L* plane in Fig. 3A.3. The size of the marks represent
the association strengths shown in 3A.1. It can be seen that there are
two separate clusters for “cantaloupe colors” and “strawberry colors”
(indicated by the dashed ovals). In Experiment 2, we selected fruits
and colors so they had the same color-concept association properties as
in Experiment 1 (compare Fig. 3B.1 to 3A.1). However, unlike Experi-
ment 1, the colors in Experiment 2 are no longer clustered in CIELAB
space (Fig. 3B.2 and Fig. 3B.3); the “watermelon colors” were split
on either side of the “mango colors”. These properties enabled us to
independently vary semantic distance and perceptual distance.

3.2 Quantifying metrics

3.2.1 Interpretability

We operationalized interpretability as the accuracy of decoding the
encoded mapping. The bar graphs in this study were unlabeled, so
there was no explicit encoded mapping from the perspective of the
participants (i.e., no objectively correct answer). However, we can

determine an optimal encoded mapping by solving an assignment prob-
lem for each pair of colors and concepts and use the solution to define
the “correct” response. The input to the assignment problem was the
set of association strengths between each color-concept pair (Fig. 3).
Recall these data came from different participants than those in the
present study. We solved the assignment problem for each pair of colors
and concepts using the method described in Section 2.1.

3.2.2 Semantic discriminability
We operationalized semantic discriminability using a new metric, called
semantic distance (∆S). To build the intuition for semantic distance,
consider semantic discriminability in the context of assignment prob-
lems, described in Section 2.1. Given color-concept association ratings,
the solution to the assignment problem yields a deterministic assign-
ment of colors to concepts. However, we want to distinguish between
robust assignments (e.g., blueberry–blue and banana–yellow, which
have high semantic discriminability), and fragile assignments (e.g.,
lemon–greenish-yellow and banana–orangish-yellow, which have low
semantic discriminability since both fruits can be either color). In a
robust assignment, we can expect all people to come to the same con-
clusion. But in a fragile assignment, people might disagree on which
assignment is correct, and the same person might even respond differ-
ently when asked the same question again. We account for variability
across individuals by assuming the association ratings between colors
and concepts are normally distributed with a mean equal to the mean
association rating and variance that is largest when the association
rating is closest to the center of the rating scale.

We now define semantic distance in the case of two concepts and
two colors and illustrate our definition in Fig. 4 using mango and
watermelon as concepts and m4 and w4 as colors.

Given two colors and two concepts, there are two possible assign-
ments of colors to concepts (indicated by black edges on the two
bipartite graphs in Fig. 4). We define the semantic distance to be
the absolute difference in the probabilities of each assignment being
chosen by a random individual. Specifically, if x1,x2,x3,x4 are the
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then present evidence that observers use assignment inference to decode
encoded mappings when interpreting visualizations.

2.1 Assignment problems for encoding
Assignment problems have been used to create color palettes that op-
timize encodings between visual features and concepts [19, 30]. An
assignment problem is a model for assigning items in one category
(e.g., colors) to items in another category (e.g., concepts) in a manner
that maximizes a total merit score [18, 23]. Assignment problems can
be represented as bipartite graphs, as shown in Fig. 2. The square
nodes are colors and the circular nodes are concepts. Edges are drawn
between each color and each concept. The number on each edge repre-
sents the “merit score” of assigning that particular color to that concept,
represented as x1, . . . ,x4. Merit scores can be calculated using different
methods [19, 30] but the goal is always the same: construct a 1-to-1
assignment between each color and a concept, such that the sum of the
merit scores of assigned color-concept pairs is maximized.
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Figure 2. Bipartite graphs representing possible assignment problems
between concepts (circles) and colors (squares). The merit of each
pairing is represented by the thickness of edges connecting each color
to each concept. Here, the merit is color-concept association strength.
Plots below each bipartite graph show the relative merit distribution
of each color for each concept, assuming that association strength is
a normally distributed random variable. In all three examples, mean
association strengths satisfy x1 + x4 > x2 + x3, so the outcomes of the
assignment problems are the same: concept A is assigned with color 1
and concept B is assigned with color 2. Black lines indicate the chosen
assignment and gray lines indicate the non-chosen assignment. ∆S
indicates approximate semantic distance for the examples.

Assignment problems are deterministic. When there are two con-
cepts and two colors as in Fig. 2, there are only two possible outcomes
and the outcome is completely determined by the merit scores on each
of the four edges. If the sum of the outer edges is greater than the sum
of the inner edges (x1 + x4 > x2 + x3), then concept A is assigned to
color 1 and concept B is assigned to color 2. If the sum of the inner
edges is greater (x2 +x3 > x1 +x4), then concept A is assigned to color
2 and concept B to color 1. Fig. 2 illustrates bipartite graphs with three
different patterns of merit on the edges, but all three scenarios produce
identical outcomes: concept A is assigned to color 1 and concept B is
assigned to color 2 because the merit scores satisfy x1 + x4 > x2 + x3.
In the left and center bipartite graphs, the solution to the assignment
problem (“global solution”) matches the solution for each concept in
isolation (“local solution”, concept A is more associated with color
1 than color 2, and concept B is more associated with color 2 than
color 1). However, in the rightmost bipartite graph, the local and global
solutions conflict: concept B is more associated with color 1, yet it
is assigned to color 2. This distinction is relevant for discussing how
humans decode encoded mappings (Section 2.2).

2.2 Assignment inference for decoding
When people decode encoded mappings, they use a process similar to
solving an assignment problem, called assignment inference [30]. In as-
signment inference, people estimate the merit of different assignments
based on association strengths between visual features and concepts,
and determine the assignment that maximizes merit. However, unlike
how computers solve assignment problems, human assignment infer-
ence is probabilistic rather than deterministic [30]. Overall, humans can
produce reliable inferences, but their responses are noisy. This noise

can be attributed to uncertainty in the color-concept associations that
serve as input into the assignment problem. In [30], this uncertainty
was built into models that were effective at predicting human responses.

Fig. 2 represents the noise in color-concept associations as distribu-
tions for each color-concept pairing. For each distribution, the mean
corresponds to edge thickness in the bipartite graph. The variability
is assumed to be normal. Assume each time a person does assign-
ment inference, they draw a random value from these distributions
to estimate merit for each edge. When the distributions are far apart
(Fig. 2 left), random draws will consistently result in the same out-
come of the assignment problem. However, when distributions overlap
(Fig. 2 middle), random draws can result in different outcomes of the
assignment problem, which results in more uncertainty in assignment
inference [30]. This is the basis for our semantic distance metric in the
present work (see Section 3.2.2).

Evidence suggests that people perform global assignment inference
when interpreting the meanings of colors in information visualiza-
tions [30]. In some cases, the global solution conflicts with local
solutions (Fig. 2, right). Such conflicts can result in people inferring
that concepts are assigned to their most weakly associated colors, even
when stronger candidate colors exist in the palette. Schloss et al. [30]
first demonstrated this phenomenon using a recycling task: participants
were presented with images of two colored bins, along with a word
describing one “target” concept. There were two possible targets, paper
and trash. When trash was the target and was presented with white
and purple bins, participants were faced with a scenario like in Fig. 2,
right. Trash was more strongly associated with white than with purple
(x3 > x4), but so was paper (x1 > x2), and the association between paper
and white was especially strong. Participants reliably discarded trash
into the purple bin, even though trash was more strongly associated
with white (analogous to blue in Fig. 2, right).

Schloss et al. [30] also assessed methods for calculating merit to gen-
erate the encoded mapping, one that maximized association strength
(isolated merit function) and one that prioritized semantic discrim-
inability over association strength (balanced merit function, although
the term semantic discriminability was not used in [30]). Within both
color palettes, responses were faster and more accurate when the target
concept was more strongly associated with its correct color, but par-
ticipants were more accurate for the balanced palette than the isolated
palette. These results suggest interpretability increases with seman-
tic discriminability. However, in addition to being more semantically
discriminable, colors in the balanced palette were also further apart
in CIELAB space (see Fig. S.1 in the Supplementary Material of
the present paper). Thus, it is unclear if colors in the balanced color
palette were easier to interpret because they were more semantically
discriminable, more perceptually discriminable, or both.

3 APPROACH

In the present study, we assessed the independent effects of semantic dis-
criminability and perceptual discriminability on participants’ interpreta-
tions of bar graph data visualizations. The paradigm was the same as in
Schloss et al. [30], but instead of interpreting colors of unlabeled trash
and recycling bins, participants interpreted colors of unlabeled bars in
a bar graph. On each trial, participants saw a graph containing two
different colored bars, along with a target fruit concept described above
the graph (Fig. 1, left). Their task was to indicate which colored bar, left
or right, corresponded to the target fruit. Within each experiment, par-
ticipants judged all pairwise combinations of eight colors for two fruits
(cantaloupe and strawberry in Experiment 1, mango and watermelon in
Experiment 2). The data from the present experiment and analysis code
are at github.com/SchlossVRL/semantic-discriminability.

We used a previous dataset on color-concept associations from
Rathore et al. [27] to select the colors for the present study (Section
3.1), define accuracy for the present tasks (Section 3.2.1), and quantify
semantic distance (Section 3.2.2). In [27], participants rated association
strengths between each of 12 fruits and each of 58 colors (UW-58
colors), uniformly sampled in CIELAB space (∆E = 25). This distance
should be at least one noticeable difference [33, 34]. Further details on
the methods of [27] are in Supplementary Material of the present paper.
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Figure 3. (A) Color-concept associations and CIELAB coordinates for colors tested in Experiment 1. (A.1) Mean association strength between each
color with the concept labeled at the top of the column (error bars are standard errors of the means. Bar colors indicate the colors that were tested
(see Table S.1 for coordinates). CIELAB coordinates are shown for each color on the (A.2) a*, b* plane and the a*, L* plane (A.3), with the size of the
marks corresponding to association strength with the concept named at the top of the column (same data as in A.1). Dashed ovals enclose the
four colors that were the relatively strong associates with the concept at the top of the column. (B) Same as A, but for the colors and concepts in
Experiment 2. Each plot has eight points, one for each color, but in some cases fewer points are visible due to occlusion on the 2D plane.

3.1 Selecting colors and concepts

We chose the colors and fruit concepts using the mean color-concept
association data from Rathore et al. [27] (see Table S.6 in the Sup-
plementary Material) and color distances in CIELAB space (∆E). In
Experiment 1, we selected eight colors and two fruits to have the fol-
lowing properties. Four colors varied from moderately to strongly
associated with the first fruit while being weakly associated with the
second fruit (Fig. 3A.1, left). The other four colors varied from moder-
ately to strongly associated with the second fruit while being weakly
associated with the first fruit (Fig. 3A.1, right). We generated candidate
colors and fruits using an optimization routine that enforced a minimum
difference in association ratings for the four colors that varied and a
weak association rating for the remaining four colors. This yielded a
list of candidate palettes. We excluded palettes involving fruits that had
colors in their names (blueberry and orange), and this led us to select-
ing cantaloupe and strawberry for our first experiment. The CIELAB
coordinates of these colors are plotted on the a*, b* plane in Fig. 3A.2
and on the a*, L* plane in Fig. 3A.3. The size of the marks represent
the association strengths shown in 3A.1. It can be seen that there are
two separate clusters for “cantaloupe colors” and “strawberry colors”
(indicated by the dashed ovals). In Experiment 2, we selected fruits
and colors so they had the same color-concept association properties as
in Experiment 1 (compare Fig. 3B.1 to 3A.1). However, unlike Experi-
ment 1, the colors in Experiment 2 are no longer clustered in CIELAB
space (Fig. 3B.2 and Fig. 3B.3); the “watermelon colors” were split
on either side of the “mango colors”. These properties enabled us to
independently vary semantic distance and perceptual distance.

3.2 Quantifying metrics

3.2.1 Interpretability

We operationalized interpretability as the accuracy of decoding the
encoded mapping. The bar graphs in this study were unlabeled, so
there was no explicit encoded mapping from the perspective of the
participants (i.e., no objectively correct answer). However, we can

determine an optimal encoded mapping by solving an assignment prob-
lem for each pair of colors and concepts and use the solution to define
the “correct” response. The input to the assignment problem was the
set of association strengths between each color-concept pair (Fig. 3).
Recall these data came from different participants than those in the
present study. We solved the assignment problem for each pair of colors
and concepts using the method described in Section 2.1.

3.2.2 Semantic discriminability
We operationalized semantic discriminability using a new metric, called
semantic distance (∆S). To build the intuition for semantic distance,
consider semantic discriminability in the context of assignment prob-
lems, described in Section 2.1. Given color-concept association ratings,
the solution to the assignment problem yields a deterministic assign-
ment of colors to concepts. However, we want to distinguish between
robust assignments (e.g., blueberry–blue and banana–yellow, which
have high semantic discriminability), and fragile assignments (e.g.,
lemon–greenish-yellow and banana–orangish-yellow, which have low
semantic discriminability since both fruits can be either color). In a
robust assignment, we can expect all people to come to the same con-
clusion. But in a fragile assignment, people might disagree on which
assignment is correct, and the same person might even respond differ-
ently when asked the same question again. We account for variability
across individuals by assuming the association ratings between colors
and concepts are normally distributed with a mean equal to the mean
association rating and variance that is largest when the association
rating is closest to the center of the rating scale.

We now define semantic distance in the case of two concepts and
two colors and illustrate our definition in Fig. 4 using mango and
watermelon as concepts and m4 and w4 as colors.

Given two colors and two concepts, there are two possible assign-
ments of colors to concepts (indicated by black edges on the two
bipartite graphs in Fig. 4). We define the semantic distance to be
the absolute difference in the probabilities of each assignment being
chosen by a random individual. Specifically, if x1,x2,x3,x4 are the
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association ratings between colors and concepts (see Fig. 4), we let
∆x = (x1 + x4)− (x2 + x3). Note that if ∆x > 0, concept M will be
assigned with color m4 and concept W will be assigned with color w4.
If ∆x < 0, the alternative assignment will be made. We assume each
xi is normally distributed, with mean equal to x̄i, the mean association
across all people for this color and concept, and standard deviation
equal to σi = 1.4 · x̄i(1− x̄i). This was found to be a good fit to the
experimental data1. We define semantic distance as

∆S =
∣∣Prob(∆x > 0)−Prob(∆x < 0)

∣∣. (1)

The probabilities in (1) can be computed by computing the z-score
using the mean and standard deviations described above.

Prob(∆x > 0) = Φ

(
(x̄1 + x̄4)− (x̄2 + x̄3)√

σ2
1 +σ2

2 +σ2
3 +σ2

4

)
, (2)

and Prob(∆x < 0) = 1−Prob(∆x > 0), where Φ(·) is the cumulative
distribution function (cdf) of the standard normal distribution. The
relationship between the xi and ∆x is illustrated in Figure 4.
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Figure 4. Illustration of semantic distance calculation using pairwise
association ratings xi between the colors m4 and w4 and the concepts
Mango (M) and Watermelon (W). Distributions are normal distributions
fit to individual participants’ color-concept association ratings, with the
dashed line showing the mean corresponding to the bars in Fig. 3B.1.
The xi are assumed to be normally distributed and combine to form
∆x. When ∆x > 0, the assignment M-m4/W-w4 is chosen and when
∆x < 0, the alternative assignment M-w4/W-m4 is chosen. In the bipartite
graphs, black/gray edges indicate the chosen/non-chosen assignment.
Edge thickness indicates the mean color-concept association rating, but
random draws can produce values above/below this mean, resulting in
outcomes to left or right of zero. We define semantic distance ∆S as the
absolute difference between these probabilities. We have 0 ≤ ∆S ≤ 1 and
a larger ∆S indicates more certainty in the outcome of the assignment.

Fig. 2 left and center illustrate how semantic distance can vary while
the assignment problem outcome remains constant. In both examples,
concept A is assigned to color 1 and concept B is assigned to color 2,

1Many other choices could be made here, by picking other functions that
have a similar qualitative shape (i.e., zero standard deviation when x̄ = 0 or 1
and maximum standard deviation when x̄ = 0.5). We experimented with other
options and found our results to be robust with respect to the choice of function.

but semantic distance decreases between Fig. 2 left and center because
the merit distributions overlap more. We predict that such decreases in
semantic distance will make visualizations more difficult to interpret.
In Fig. 2 right, the colors have a greater semantic distance than in Fig. 2
center, even though color 1 is more strongly associated than color 2
with both concept A and concept B. Thus, the scenario in Fig. 2 right
should be more interpretable than Fig. 2 center. This example shows
how colors can have a large semantic distance with respect to two
concepts, even though neither color is strongly evocative of a particular
concept within the set. Prior work has shown such cases are easily
interpretable [30] (see Section 2.2).

Fig. 5A shows semantic distance for all 28 pairwise combinations
of 8 colors tested in Experiment 1 (see figure caption for details on
how to interpret this plot). There is only one plot for both cantaloupe
and strawberry because semantic distance for a given set of colors and
concepts is symmetric. That is, the distance between colors c1 and s1 is
the same, regardless of whether the target is cantaloupe or strawberry.
When cantaloupe colors are paired with other cantaloupe colors (on
curves labeled c1, c2, c3), semantic distance increases as the difference
in association strength increases (i.e., distance on the x-axis), but then
levels off once reaching strawberry colors because all strawberry colors
are similarly weakly associated with cantaloupe. To see the analogous
pattern for strawberry colors, it is necessary to compare the heights
of data points at each x-axis position. For example, looking at s1 on
the x-axis, semantic distance steadily increases for pairings with other
strawberry colors as association strength difference increases (s2 to s4),
and then levels off when reaching the four cantaloupe colors.

Fig. 5B shows semantic distance for the colors and concepts in Ex-
periment 2. Given that the pattern of association strengths across colors
in Experiment 2 (Fig. 3B.1) was similar to Experiment 1 (Fig. 3A.1),
the pattern of semantic distances were strongly correlated between the
two experiments (r(26) = .99, p < .001).

3.2.3 Perceptual discriminability
We operationalized perceptual discriminability as perceptual distance
(∆E) in CIELAB color space, as in previous visualization research [33,
34]. Fig. 5C shows perceptual distances in Experiment 1 and Fig. 5D
shows perceptual distances in Experiment 2, plotted in the same manner
as semantic distance. In Experiment 1, perceptual distance (Fig. 5C)
deviated from semantic distance (Fig. 5A) but the two variables were
still correlated (r(26) = .71, p < .001). In Experiment 2, perceptual
distance (Fig. 5D) and semantic distance (Fig. 5B) were uncorrelated
(r(26) = .02, p = .920). Perceptual distances in Experiment 1 and
Experiment 2 were also uncorrelated (r(26) = .08, p = .673)

4 EXPERIMENT 1
This experiment tested for independent effects of semantic and percep-
tual distance on interpretability, using the colors in Fig. 3A. Although
semantic distance and perceptual distance were correlated, we could
test for independent effects of each factor using regression analyses.

4.1 Methods
Participants. 36 undergraduates (mean age = 18.3, 25 females,
11 males) participated for credit in Introductory Psychology. All had
normal color vision (screened with [10]), and gave informed consent.
The UW–Madison IRB approved the protocol for this study.

Design and Displays. Participants were presented with bar graphs
showing fictitious data about preferences for two different fruits (Fig. 1,
left). Each graph had two colored bars, one for each fruit. The bars
were two different colors, determined by all 28 pairwise combinations
of eight colors (Fig. 3A, Table S.1 in the Supplementary Material). The
bars were 50 pixels wide (2.4 cm wide) and varied in height. Each
trial contained a taller and shorter bar with base heights of 150 and
100 pixels (5.1 and 3.7 cm), respectively. Bar heights were randomly,
and independently, adjusted around their base height by +/- 5 pixels (.2
cm) on each trial. The side of the graph containing the taller bar was
left/right balanced. The x and y axes of the graph were 200 and 250
pixels long respectively. The y-axis was labeled as “Preference” (font
size 14) and the x-axis and bars were unlabeled. The target fruit for
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Figure 5. The left column (A,C,E,G) refers to Experiment 1 (cantaloupe and strawberry) and the right column (B,D,F,H) shows the analogous data for
Experiment 2 (mango and watermelon). We will describe the left column. The top row shows semantic distances (∆S) for all pairs of colors. Since
∆S for a pair of colors is defined in the context of both target fruits, we can represent the data in a single plot. The plot contains 28 points, one for
each pair of distinct colors from the set of 8 colors. Each of the 28 points is identified with a pair of colors as follows. The color of the point itself
identifies the first color, and the vertical dashed line crossing that point leads to a label on the x-axis, identifying the second color. Thus, all points
connected by dashed lines share a common color, and likewise for the solid lines. The colored squares along the x-axis and associated labels also
serve as a legend for the mark colors. In (A), colors c1 to c4 are the colors most strongly associated with cantaloupe and s1 to s4 are the colors most
associate with strawberry (lower subscripts are more strongly associated with the fruit indicated by the letter, see also Fig. 3). The second row shows
perceptual distance (∆E), plotted in the same manner as semantic distance. The third row shows mean proportion of correct responses plotted
separately for each target concept because each target was assessed independently. Error bars represent standard errors of the means using the
Cousineau [5] adjustment to account for overall differences at the subject level. The bottom row shows predicted response accuracy using regression
equations from Table 1.
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association ratings between colors and concepts (see Fig. 4), we let
∆x = (x1 + x4)− (x2 + x3). Note that if ∆x > 0, concept M will be
assigned with color m4 and concept W will be assigned with color w4.
If ∆x < 0, the alternative assignment will be made. We assume each
xi is normally distributed, with mean equal to x̄i, the mean association
across all people for this color and concept, and standard deviation
equal to σi = 1.4 · x̄i(1− x̄i). This was found to be a good fit to the
experimental data1. We define semantic distance as

∆S =
∣∣Prob(∆x > 0)−Prob(∆x < 0)

∣∣. (1)

The probabilities in (1) can be computed by computing the z-score
using the mean and standard deviations described above.

Prob(∆x > 0) = Φ

(
(x̄1 + x̄4)− (x̄2 + x̄3)√

σ2
1 +σ2

2 +σ2
3 +σ2

4

)
, (2)

and Prob(∆x < 0) = 1−Prob(∆x > 0), where Φ(·) is the cumulative
distribution function (cdf) of the standard normal distribution. The
relationship between the xi and ∆x is illustrated in Figure 4.

Distribution of 

-2 -1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

. D
en

si
ty

0 .5 1
Association Rating

0.0

1.0

2.0

Pr
ob

. D
en

si
ty

0 .5 10 .5 10 .5 1

WatermelonMangoMango Watermelon
w4w4m4 m4

x1 x3x2x4+ +–

Δx = (x1 +  x4) – (x2 +  x3)

( ) ( )

M W

m4

x1
x2 x4

x3

w4

M W

m4

x1
x2 x4

x3

w4

Prob(Δx > 0)Prob(Δx < 0)

ΔS = absolute difference of areas
ΔS = | Prob(Δx > 0) – Prob(Δx < 0) |

Figure 4. Illustration of semantic distance calculation using pairwise
association ratings xi between the colors m4 and w4 and the concepts
Mango (M) and Watermelon (W). Distributions are normal distributions
fit to individual participants’ color-concept association ratings, with the
dashed line showing the mean corresponding to the bars in Fig. 3B.1.
The xi are assumed to be normally distributed and combine to form
∆x. When ∆x > 0, the assignment M-m4/W-w4 is chosen and when
∆x < 0, the alternative assignment M-w4/W-m4 is chosen. In the bipartite
graphs, black/gray edges indicate the chosen/non-chosen assignment.
Edge thickness indicates the mean color-concept association rating, but
random draws can produce values above/below this mean, resulting in
outcomes to left or right of zero. We define semantic distance ∆S as the
absolute difference between these probabilities. We have 0 ≤ ∆S ≤ 1 and
a larger ∆S indicates more certainty in the outcome of the assignment.

Fig. 2 left and center illustrate how semantic distance can vary while
the assignment problem outcome remains constant. In both examples,
concept A is assigned to color 1 and concept B is assigned to color 2,

1Many other choices could be made here, by picking other functions that
have a similar qualitative shape (i.e., zero standard deviation when x̄ = 0 or 1
and maximum standard deviation when x̄ = 0.5). We experimented with other
options and found our results to be robust with respect to the choice of function.

but semantic distance decreases between Fig. 2 left and center because
the merit distributions overlap more. We predict that such decreases in
semantic distance will make visualizations more difficult to interpret.
In Fig. 2 right, the colors have a greater semantic distance than in Fig. 2
center, even though color 1 is more strongly associated than color 2
with both concept A and concept B. Thus, the scenario in Fig. 2 right
should be more interpretable than Fig. 2 center. This example shows
how colors can have a large semantic distance with respect to two
concepts, even though neither color is strongly evocative of a particular
concept within the set. Prior work has shown such cases are easily
interpretable [30] (see Section 2.2).

Fig. 5A shows semantic distance for all 28 pairwise combinations
of 8 colors tested in Experiment 1 (see figure caption for details on
how to interpret this plot). There is only one plot for both cantaloupe
and strawberry because semantic distance for a given set of colors and
concepts is symmetric. That is, the distance between colors c1 and s1 is
the same, regardless of whether the target is cantaloupe or strawberry.
When cantaloupe colors are paired with other cantaloupe colors (on
curves labeled c1, c2, c3), semantic distance increases as the difference
in association strength increases (i.e., distance on the x-axis), but then
levels off once reaching strawberry colors because all strawberry colors
are similarly weakly associated with cantaloupe. To see the analogous
pattern for strawberry colors, it is necessary to compare the heights
of data points at each x-axis position. For example, looking at s1 on
the x-axis, semantic distance steadily increases for pairings with other
strawberry colors as association strength difference increases (s2 to s4),
and then levels off when reaching the four cantaloupe colors.

Fig. 5B shows semantic distance for the colors and concepts in Ex-
periment 2. Given that the pattern of association strengths across colors
in Experiment 2 (Fig. 3B.1) was similar to Experiment 1 (Fig. 3A.1),
the pattern of semantic distances were strongly correlated between the
two experiments (r(26) = .99, p < .001).

3.2.3 Perceptual discriminability
We operationalized perceptual discriminability as perceptual distance
(∆E) in CIELAB color space, as in previous visualization research [33,
34]. Fig. 5C shows perceptual distances in Experiment 1 and Fig. 5D
shows perceptual distances in Experiment 2, plotted in the same manner
as semantic distance. In Experiment 1, perceptual distance (Fig. 5C)
deviated from semantic distance (Fig. 5A) but the two variables were
still correlated (r(26) = .71, p < .001). In Experiment 2, perceptual
distance (Fig. 5D) and semantic distance (Fig. 5B) were uncorrelated
(r(26) = .02, p = .920). Perceptual distances in Experiment 1 and
Experiment 2 were also uncorrelated (r(26) = .08, p = .673)

4 EXPERIMENT 1
This experiment tested for independent effects of semantic and percep-
tual distance on interpretability, using the colors in Fig. 3A. Although
semantic distance and perceptual distance were correlated, we could
test for independent effects of each factor using regression analyses.

4.1 Methods
Participants. 36 undergraduates (mean age = 18.3, 25 females,
11 males) participated for credit in Introductory Psychology. All had
normal color vision (screened with [10]), and gave informed consent.
The UW–Madison IRB approved the protocol for this study.

Design and Displays. Participants were presented with bar graphs
showing fictitious data about preferences for two different fruits (Fig. 1,
left). Each graph had two colored bars, one for each fruit. The bars
were two different colors, determined by all 28 pairwise combinations
of eight colors (Fig. 3A, Table S.1 in the Supplementary Material). The
bars were 50 pixels wide (2.4 cm wide) and varied in height. Each
trial contained a taller and shorter bar with base heights of 150 and
100 pixels (5.1 and 3.7 cm), respectively. Bar heights were randomly,
and independently, adjusted around their base height by +/- 5 pixels (.2
cm) on each trial. The side of the graph containing the taller bar was
left/right balanced. The x and y axes of the graph were 200 and 250
pixels long respectively. The y-axis was labeled as “Preference” (font
size 14) and the x-axis and bars were unlabeled. The target fruit for
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Figure 5. The left column (A,C,E,G) refers to Experiment 1 (cantaloupe and strawberry) and the right column (B,D,F,H) shows the analogous data for
Experiment 2 (mango and watermelon). We will describe the left column. The top row shows semantic distances (∆S) for all pairs of colors. Since
∆S for a pair of colors is defined in the context of both target fruits, we can represent the data in a single plot. The plot contains 28 points, one for
each pair of distinct colors from the set of 8 colors. Each of the 28 points is identified with a pair of colors as follows. The color of the point itself
identifies the first color, and the vertical dashed line crossing that point leads to a label on the x-axis, identifying the second color. Thus, all points
connected by dashed lines share a common color, and likewise for the solid lines. The colored squares along the x-axis and associated labels also
serve as a legend for the mark colors. In (A), colors c1 to c4 are the colors most strongly associated with cantaloupe and s1 to s4 are the colors most
associate with strawberry (lower subscripts are more strongly associated with the fruit indicated by the letter, see also Fig. 3). The second row shows
perceptual distance (∆E), plotted in the same manner as semantic distance. The third row shows mean proportion of correct responses plotted
separately for each target concept because each target was assessed independently. Error bars represent standard errors of the means using the
Cousineau [5] adjustment to account for overall differences at the subject level. The bottom row shows predicted response accuracy using regression
equations from Table 1.
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a given trial was displayed as text positioned above the graph (20 pt
font), centered on the x-axis. Thus, the full experiment design included
2 target concepts (cantaloupe or strawberry) × 28 color pairs × 2
positions of the colors within each pair (left or right) × 2 taller bar
sides (left or right) × 3 repetitions, producing 672 trials.

The displays were generated and presented using Presentation (www.
neurobs.com). The monitor was a 24.1 in ASUS ProArt PA249Q
monitor (1920× 1200 resolution), viewed from about 60 cm. The
background was gray (CIE Illuminant D65, x = .3127, y = .3290, Y =
10 cd/m2). We used a white point of D65, luminance = 100 cd/m2) to
convert between CIELAB and CIE 1931 xyY coordinates. We used a
Photo Research PR-655 SpectraScan spectroradiometer to characterize
the monitor and verify accurate presentation of the colors. The deviance
between the measured and target colors in CIE 1931 xyY coordinates
was < .01 for x and y, and < 1 cd/m2 for Y.

Procedure. The participants were told that they would be presented
with a series of bar graphs, each showing a different person’s prefer-
ences for two fruits, cantaloupe and strawberry. Within each graph,
one bar would represent cantaloupe and the other bar would represent
strawberry. The bars would have different colors, but would not be
labeled. Above the graph, participants would see the name of one of the
two fruits, cantaloupe or strawberry. Their task was to decide which bar
corresponded to the fruit described above the graph and to respond by
pressing the corresponding arrow key (left or right). Participants were
reminded that the bars would not be labeled, and were asked to use their
intuition about which bar color corresponded to the fruit described.

Participants then completed five practice trials drawn at random from
all possible trials. They then completed the 672 test trials, presented
in a blocked randomized design (three blocks to accommodate three
repetitions). Each block included all combinations of targets, color
pairs, color positions, and bar height positions, presented in a random
order. Participants received a break after each set of 28 trials. Stimuli
remained on the screen until participants responded, and trials were
separated by a 500-ms inter-trial interval. We recorded which color was
chosen and the response time (RT) to make the choice on each trial.

4.2 Results and Discussion
We first present results on accuracy, where “correct” was defined as the
solution to the assignment problem for both possible targets and the
two colors on a given trial (see Sections 2.1 and 3.2.1). We then present
results on RTs, which can be interpreted as how difficult it was to make
the decision on each trial, regardless of accuracy.

Accuracy. Fig. 5E shows mean accuracy for each color pair when
the target was cantaloupe (left) or strawberry (right). To obtain these
means, we first calculated the proportion of correct trials for each
participant, for each target (cantaloupe or strawberry) and each pair
of colors (all 28 combinations of 8 colors). This proportion included
12 data points (2 left/right positions of the colors within each pair × 2
positions of the taller bar within the bar graph × 3 repetitions). We then
calculated the mean for each target and color pair across participants.

The correct color for each target and each color pair is indicated by
the color positions on the x-axes of Fig. 5E. Within each color pair, the
color toward the left on the x-axis was correct for cantaloupe, and the
color toward the right was correct for strawberry. For example, given c2
and c4, c2 was correct for cantaloupe and c4 was correct for strawberry.

We first highlight three key observations in Fig. 5E. First, most of
the responses were well above chance. This means that participants
could reliably decode our encoded mappings, even though there was
no legend. Second, there is systematic variability in response accuracy
across color pairs. This provides further support that human assignment
inference is probabilistic, not deterministic. Recall that if a computer
were solving assignment problems in our task, the outcome would be
deterministic—responses would all be at 1.0 regardless of whether the
assignment problem was robust or fragile (see Sections 2.1 and 3.2.2).

Third, the pattern of accuracies resembles aspects of semantic dis-
tance (Fig. 5A) and perceptual distance (Fig. 5C). Like both predic-
tors, accuracy tends to be greater when pairs include one cantaloupe
color (c1 - c4) and one strawberry color (s1 - c4) (“between-concept
pairs”), especially for cantaloupe. The predictors differ in that semantic

Table 1. Mixed-effect logistic regression models of accuracy in Experi-
ment 1 (Acc 1.1, Acc 1.2) and Experiment 2 (Acc 2.1, Acc 2.2).

Model Factor β SE z p

Acc 1.1 Intercept 0.89 0.14 6.37 <.001
PercDist 0.22 0.06 3.58 <.001
SemDist 0.34 0.07 4.96 <.001

Acc 1.2 Intercept 0.91 0.14 6.38 <.001
PercDist 0.26 0.06 4.11 <.001
SemDist 0.23 0.07 3.05 .002
Assoc 0.23 0.05 4.77 <.001

Acc 2.1 Intercept 0.97 0.12 8.36 <.001
PercDist -0.06 0.03 -1.90 .057
SemDist 0.55 0.06 9.24 <.001

Acc 2.2 Intercept 1.00 0.12 8.45 <.001
PercDist -0.06 0.03 -1.84 .066
SemDist 0.41 0.06 6.86 <.001
Assoc 0.37 0.05 7.95 <.001

distance increased monotonically from left to right in 5A, whereas
perceptual distance is non-monotonic based on how we selected the
colors. Perceptual distance is flatter among “within-concept” color
pairs where colors are perceptually similar (among c1 - c4 and among
s1 - s4), and fluctuates systematically across between-concept color
pairs (Fig 5C). Accuracy resembles the flatness of perceptual distance
for within-concept pairs where colors were most perceptually similar
(especially for cantaloupe), but accuracy resembles the smoothness of
semantic distance for between-concept pairs where colors were most
perceptually distinct.

To test for independent effects of perceptual and semantic distance
on accuracy, we used a mixed effect logistic regression (R version 4.0.2,
lme4 1.1-23). The dependent measure was accuracy on each trial for
each participant (1 = correct, 0 = incorrect). We included fixed effects
for semantic distance and perceptual distance, and random slopes and
intercepts for subjects within each fixed effect. We used z-scores of the
predictors in all models to center them and put them on similar scales.
As shown in Table 1 (Model Acc 1.1), accuracy significantly increased
with increased semantic distance and perceptual distance.

Recall that both semantic and perceptual distance are symmetric,
they are defined with respect to a given color pair, irrespective of the
target. Thus, based on these factors alone, we would predict that the
pattern of responses for both targets would be the same. However, as
shown in Fig. 5E, there are systematic asymmetries. In particular, note
how accuracy among pairs including the strawberry colors was greater
for strawberry targets than cantaloupe targets. To fully capture this
pattern of data, it is necessary to add another predictor that accounts
for differences depending on the target concept.

Thus, we repeated the same model but added a new factor that
could capture target-specific responses: association strength between
the target and the correct color. This factor was previously shown to
predict accuracy and RTs for similar data [30]. As shown in Table 1
(model Acc 1.2), association strength significantly predicted accuracy,
and the previous two factors were still significant. Therefore, accuracy
increased with semantic distance, perceptual distance, and association
strength between the target and the correct color. Fig. 5G shows the
predicted data using weights from model Acc 1.2 in Table 1. The model
predictions and data for all 28 color pairs × 2 concepts are strongly
correlated (r(54) = .82, p < .001).

We also examined the relation between predictors in the model.
Across the 28 color pairs for each of the two targets, association strength
between the target and correct color was moderately correlated with se-
mantic distance (r(54) = .43, p < .001) and not significantly correlated
with perceptual distance (r(54) = .21, p = .123).

Response time. Fig. 6A shows mean RTs for each color pair, ob-
tained by first calculating the median RT across all 12 trials for each
target and color pair for each participant, and then calculating the mean
over participants. Treating RTs this way avoids effects of outliers
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Figure 6. The top row shows mean RTs for (A) Experiment 1 and (B) Experiment 2, plotted in the same manner as in Fig. 5. Error bars represent
standard errors of the means, using the Cousineau [5] adjustment to account for overall differences at the subject level. The bottom row shows
regression predictions for RTs using the model with all three predictors in Table 2 in (C) Experiment 1 and (D) Experiment 2.

without excluding trials [26]. Mean RTs were negatively correlated
with mean accuracy (r(54) = −.71, p < .001), such that participants
responded more quickly for color pairs that facilitate accuracy.

We analyzed the RT data using linear-mixed effect models with the
same predictors as for accuracy. The model results are in Table 2. When
perceptual distance and semantic distance were the only fixed effects
(model RT 1.1), neither predictor explained significant variance. When
association strength was added to the model, it explained significant
variance, as did perceptual distance (model RT 1.2). Thus, RTs were
faster when association strength was stronger and when perceptual
distance was larger. Fig. 6C shows the model prediction using the
weights from model RT 1.2 in Table 2. Model predictions were strongly
correlated with mean RTs (r(54) = .82, p < .001).

Table 2. Linear mixed-effects regression models of RT in Experiment 1
(RT 1.1, RT 1.2) and Experiment 2 (RT 2.1, RT 2.2).

Model Factor β SE df t p

RT 1.1 Interept 1017.7 53.2 35.0 19.1 <.001
PercDist -29.3 17.1 121.4 -1.7 .088
SemDist -37.2 20.6 39.0 -1.8 .078

RT 1.2 Interept 1017.7 53.2 35.0 19.1 <.001
PercDist -42.8 17.0 156.9 -2.5 .013
SemDist 1.9 19.6 78.6 0.1 .924
Assoc -68.3 15.9 48.0 -4.3 <.001

RT 2.1 Intercept 1121.5 62.3 35.0 18.0 <.001
PercDist 12.1 8.0 35.0 1.5 .139
SemDist -86.4 15.1 35.0 -5.7 <.001

RT 2.2 Intercept 1121.5 62.3 35.0 18.0 <.001
PercDist 9.0 7.9 35.0 1.1 .260
SemDist -36.0 9.9 35.0 -3.6 <.001
Assoc -120.6 20.0 35.0 -6.0 <.001

In summary, semantic distance and perceptual distance both inde-
pendently contributed to interpretability. However, the “cantaloupe
colors” and “strawberry colors” were clustered in different parts of
color space, (Fig. 3A.2-3), so conflicts between semantic and percep-
tual distance were only minor. In Experiment 2, we address the question

of how these two factors would contribute to interpretability if they
were overall decorrelated and included examples of large conflicts.

5 EXPERIMENT 2
This experiment tested for independent effects of semantic and percep-
tual distance when these two factors were uncorrelated. The pattern of
association strengths was similar to Experiment 1 (Fig. 3A.1 and B.1),
so the pattern of semantic distances were also similar (Fig. 5A and
5B). However, the relative locus of colors in CIELAB space was differ-
ent. In Experiment 1, the strong associates for each concept clustered
together (Fig. 3A.2-A.3), but in Experiment 2, the four “watermelon
colors” were split on either side of the “mango colors” along the a* axis
(Fig. 3B.2-B.3). Thus, for watermelon, the most semantically similar
colors were furthest in color distance.

5.1 Methods
36 undergraduates (mean age = 19.4, 18 females, 18 males) participated
for credit in Introductory Psychology. All had normal color vision
(screened with [10]), and gave informed consent. The design, displays,
and procedure were the same as Experiment 1, except we tested the
colors and fruits in Fig. 3B (Table S.1).

5.2 Results and discussion
The colors and fruits in Experiment 1 and 2 differed in that their pat-
terns of perceptual distances were uncorrelated (r(26) = .08, p = .673)
but their patterns of semantic distances were almost perfectly correlated
(r(26) = .99, p < .001). Thus, if the patterns of data in Experiment 2
are similar to Experiment 1, they can be attributed to their similarities
in semantic distance. Fig. 5F shows the mean accuracy data and Fig. 6B
shows the mean RTs, calculated in the same manner as in Experiment 1.
Indeed, there were significant correlations between the patterns of accu-
racy (r(54) = .66, p < .001) and RT (r(54) = .79, p < .001) between
the two experiments.

Accuracy. We analyzed accuracy using the same mixed-effect lo-
gistic regression models as in Experiment 1. The first model including
perceptual distance and semantic distance showed that semantic dis-
tance significantly predicted accuracy (Table 1, model Acc 2.1). The
effect of perceptual distance was marginal, but it was in the opposite
direction from Experiment 1. That is, accuracy tended to increase for
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a given trial was displayed as text positioned above the graph (20 pt
font), centered on the x-axis. Thus, the full experiment design included
2 target concepts (cantaloupe or strawberry) × 28 color pairs × 2
positions of the colors within each pair (left or right) × 2 taller bar
sides (left or right) × 3 repetitions, producing 672 trials.

The displays were generated and presented using Presentation (www.
neurobs.com). The monitor was a 24.1 in ASUS ProArt PA249Q
monitor (1920× 1200 resolution), viewed from about 60 cm. The
background was gray (CIE Illuminant D65, x = .3127, y = .3290, Y =
10 cd/m2). We used a white point of D65, luminance = 100 cd/m2) to
convert between CIELAB and CIE 1931 xyY coordinates. We used a
Photo Research PR-655 SpectraScan spectroradiometer to characterize
the monitor and verify accurate presentation of the colors. The deviance
between the measured and target colors in CIE 1931 xyY coordinates
was < .01 for x and y, and < 1 cd/m2 for Y.

Procedure. The participants were told that they would be presented
with a series of bar graphs, each showing a different person’s prefer-
ences for two fruits, cantaloupe and strawberry. Within each graph,
one bar would represent cantaloupe and the other bar would represent
strawberry. The bars would have different colors, but would not be
labeled. Above the graph, participants would see the name of one of the
two fruits, cantaloupe or strawberry. Their task was to decide which bar
corresponded to the fruit described above the graph and to respond by
pressing the corresponding arrow key (left or right). Participants were
reminded that the bars would not be labeled, and were asked to use their
intuition about which bar color corresponded to the fruit described.

Participants then completed five practice trials drawn at random from
all possible trials. They then completed the 672 test trials, presented
in a blocked randomized design (three blocks to accommodate three
repetitions). Each block included all combinations of targets, color
pairs, color positions, and bar height positions, presented in a random
order. Participants received a break after each set of 28 trials. Stimuli
remained on the screen until participants responded, and trials were
separated by a 500-ms inter-trial interval. We recorded which color was
chosen and the response time (RT) to make the choice on each trial.

4.2 Results and Discussion
We first present results on accuracy, where “correct” was defined as the
solution to the assignment problem for both possible targets and the
two colors on a given trial (see Sections 2.1 and 3.2.1). We then present
results on RTs, which can be interpreted as how difficult it was to make
the decision on each trial, regardless of accuracy.

Accuracy. Fig. 5E shows mean accuracy for each color pair when
the target was cantaloupe (left) or strawberry (right). To obtain these
means, we first calculated the proportion of correct trials for each
participant, for each target (cantaloupe or strawberry) and each pair
of colors (all 28 combinations of 8 colors). This proportion included
12 data points (2 left/right positions of the colors within each pair × 2
positions of the taller bar within the bar graph × 3 repetitions). We then
calculated the mean for each target and color pair across participants.

The correct color for each target and each color pair is indicated by
the color positions on the x-axes of Fig. 5E. Within each color pair, the
color toward the left on the x-axis was correct for cantaloupe, and the
color toward the right was correct for strawberry. For example, given c2
and c4, c2 was correct for cantaloupe and c4 was correct for strawberry.

We first highlight three key observations in Fig. 5E. First, most of
the responses were well above chance. This means that participants
could reliably decode our encoded mappings, even though there was
no legend. Second, there is systematic variability in response accuracy
across color pairs. This provides further support that human assignment
inference is probabilistic, not deterministic. Recall that if a computer
were solving assignment problems in our task, the outcome would be
deterministic—responses would all be at 1.0 regardless of whether the
assignment problem was robust or fragile (see Sections 2.1 and 3.2.2).

Third, the pattern of accuracies resembles aspects of semantic dis-
tance (Fig. 5A) and perceptual distance (Fig. 5C). Like both predic-
tors, accuracy tends to be greater when pairs include one cantaloupe
color (c1 - c4) and one strawberry color (s1 - c4) (“between-concept
pairs”), especially for cantaloupe. The predictors differ in that semantic

Table 1. Mixed-effect logistic regression models of accuracy in Experi-
ment 1 (Acc 1.1, Acc 1.2) and Experiment 2 (Acc 2.1, Acc 2.2).

Model Factor β SE z p

Acc 1.1 Intercept 0.89 0.14 6.37 <.001
PercDist 0.22 0.06 3.58 <.001
SemDist 0.34 0.07 4.96 <.001

Acc 1.2 Intercept 0.91 0.14 6.38 <.001
PercDist 0.26 0.06 4.11 <.001
SemDist 0.23 0.07 3.05 .002
Assoc 0.23 0.05 4.77 <.001

Acc 2.1 Intercept 0.97 0.12 8.36 <.001
PercDist -0.06 0.03 -1.90 .057
SemDist 0.55 0.06 9.24 <.001

Acc 2.2 Intercept 1.00 0.12 8.45 <.001
PercDist -0.06 0.03 -1.84 .066
SemDist 0.41 0.06 6.86 <.001
Assoc 0.37 0.05 7.95 <.001

distance increased monotonically from left to right in 5A, whereas
perceptual distance is non-monotonic based on how we selected the
colors. Perceptual distance is flatter among “within-concept” color
pairs where colors are perceptually similar (among c1 - c4 and among
s1 - s4), and fluctuates systematically across between-concept color
pairs (Fig 5C). Accuracy resembles the flatness of perceptual distance
for within-concept pairs where colors were most perceptually similar
(especially for cantaloupe), but accuracy resembles the smoothness of
semantic distance for between-concept pairs where colors were most
perceptually distinct.

To test for independent effects of perceptual and semantic distance
on accuracy, we used a mixed effect logistic regression (R version 4.0.2,
lme4 1.1-23). The dependent measure was accuracy on each trial for
each participant (1 = correct, 0 = incorrect). We included fixed effects
for semantic distance and perceptual distance, and random slopes and
intercepts for subjects within each fixed effect. We used z-scores of the
predictors in all models to center them and put them on similar scales.
As shown in Table 1 (Model Acc 1.1), accuracy significantly increased
with increased semantic distance and perceptual distance.

Recall that both semantic and perceptual distance are symmetric,
they are defined with respect to a given color pair, irrespective of the
target. Thus, based on these factors alone, we would predict that the
pattern of responses for both targets would be the same. However, as
shown in Fig. 5E, there are systematic asymmetries. In particular, note
how accuracy among pairs including the strawberry colors was greater
for strawberry targets than cantaloupe targets. To fully capture this
pattern of data, it is necessary to add another predictor that accounts
for differences depending on the target concept.

Thus, we repeated the same model but added a new factor that
could capture target-specific responses: association strength between
the target and the correct color. This factor was previously shown to
predict accuracy and RTs for similar data [30]. As shown in Table 1
(model Acc 1.2), association strength significantly predicted accuracy,
and the previous two factors were still significant. Therefore, accuracy
increased with semantic distance, perceptual distance, and association
strength between the target and the correct color. Fig. 5G shows the
predicted data using weights from model Acc 1.2 in Table 1. The model
predictions and data for all 28 color pairs × 2 concepts are strongly
correlated (r(54) = .82, p < .001).

We also examined the relation between predictors in the model.
Across the 28 color pairs for each of the two targets, association strength
between the target and correct color was moderately correlated with se-
mantic distance (r(54) = .43, p < .001) and not significantly correlated
with perceptual distance (r(54) = .21, p = .123).

Response time. Fig. 6A shows mean RTs for each color pair, ob-
tained by first calculating the median RT across all 12 trials for each
target and color pair for each participant, and then calculating the mean
over participants. Treating RTs this way avoids effects of outliers
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Figure 6. The top row shows mean RTs for (A) Experiment 1 and (B) Experiment 2, plotted in the same manner as in Fig. 5. Error bars represent
standard errors of the means, using the Cousineau [5] adjustment to account for overall differences at the subject level. The bottom row shows
regression predictions for RTs using the model with all three predictors in Table 2 in (C) Experiment 1 and (D) Experiment 2.

without excluding trials [26]. Mean RTs were negatively correlated
with mean accuracy (r(54) = −.71, p < .001), such that participants
responded more quickly for color pairs that facilitate accuracy.

We analyzed the RT data using linear-mixed effect models with the
same predictors as for accuracy. The model results are in Table 2. When
perceptual distance and semantic distance were the only fixed effects
(model RT 1.1), neither predictor explained significant variance. When
association strength was added to the model, it explained significant
variance, as did perceptual distance (model RT 1.2). Thus, RTs were
faster when association strength was stronger and when perceptual
distance was larger. Fig. 6C shows the model prediction using the
weights from model RT 1.2 in Table 2. Model predictions were strongly
correlated with mean RTs (r(54) = .82, p < .001).

Table 2. Linear mixed-effects regression models of RT in Experiment 1
(RT 1.1, RT 1.2) and Experiment 2 (RT 2.1, RT 2.2).

Model Factor β SE df t p

RT 1.1 Interept 1017.7 53.2 35.0 19.1 <.001
PercDist -29.3 17.1 121.4 -1.7 .088
SemDist -37.2 20.6 39.0 -1.8 .078

RT 1.2 Interept 1017.7 53.2 35.0 19.1 <.001
PercDist -42.8 17.0 156.9 -2.5 .013
SemDist 1.9 19.6 78.6 0.1 .924
Assoc -68.3 15.9 48.0 -4.3 <.001

RT 2.1 Intercept 1121.5 62.3 35.0 18.0 <.001
PercDist 12.1 8.0 35.0 1.5 .139
SemDist -86.4 15.1 35.0 -5.7 <.001

RT 2.2 Intercept 1121.5 62.3 35.0 18.0 <.001
PercDist 9.0 7.9 35.0 1.1 .260
SemDist -36.0 9.9 35.0 -3.6 <.001
Assoc -120.6 20.0 35.0 -6.0 <.001

In summary, semantic distance and perceptual distance both inde-
pendently contributed to interpretability. However, the “cantaloupe
colors” and “strawberry colors” were clustered in different parts of
color space, (Fig. 3A.2-3), so conflicts between semantic and percep-
tual distance were only minor. In Experiment 2, we address the question

of how these two factors would contribute to interpretability if they
were overall decorrelated and included examples of large conflicts.

5 EXPERIMENT 2
This experiment tested for independent effects of semantic and percep-
tual distance when these two factors were uncorrelated. The pattern of
association strengths was similar to Experiment 1 (Fig. 3A.1 and B.1),
so the pattern of semantic distances were also similar (Fig. 5A and
5B). However, the relative locus of colors in CIELAB space was differ-
ent. In Experiment 1, the strong associates for each concept clustered
together (Fig. 3A.2-A.3), but in Experiment 2, the four “watermelon
colors” were split on either side of the “mango colors” along the a* axis
(Fig. 3B.2-B.3). Thus, for watermelon, the most semantically similar
colors were furthest in color distance.

5.1 Methods
36 undergraduates (mean age = 19.4, 18 females, 18 males) participated
for credit in Introductory Psychology. All had normal color vision
(screened with [10]), and gave informed consent. The design, displays,
and procedure were the same as Experiment 1, except we tested the
colors and fruits in Fig. 3B (Table S.1).

5.2 Results and discussion
The colors and fruits in Experiment 1 and 2 differed in that their pat-
terns of perceptual distances were uncorrelated (r(26) = .08, p = .673)
but their patterns of semantic distances were almost perfectly correlated
(r(26) = .99, p < .001). Thus, if the patterns of data in Experiment 2
are similar to Experiment 1, they can be attributed to their similarities
in semantic distance. Fig. 5F shows the mean accuracy data and Fig. 6B
shows the mean RTs, calculated in the same manner as in Experiment 1.
Indeed, there were significant correlations between the patterns of accu-
racy (r(54) = .66, p < .001) and RT (r(54) = .79, p < .001) between
the two experiments.

Accuracy. We analyzed accuracy using the same mixed-effect lo-
gistic regression models as in Experiment 1. The first model including
perceptual distance and semantic distance showed that semantic dis-
tance significantly predicted accuracy (Table 1, model Acc 2.1). The
effect of perceptual distance was marginal, but it was in the opposite
direction from Experiment 1. That is, accuracy tended to increase for
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more perceptually similar colors, probably because colors that were
perceptually similar (e.g., w1 (red) and m2 (dark orange)) were seman-
tically different, whereas colors that were perceptually distant were
semantically similar (e.g., w1 (red) and w2 (green)) (Fig. 1).

When we added association strength between the target and correct
color into the model, association strength was a significant predictor, as
was semantic distance (Table 1, model Acc 2.2). The effect of percep-
tual distance was still marginal, again in the opposite direction (more
perceptually different tended to result in reduced accuracy). Fig. 5H
shows the predicted accuracy based on the regression weights in model
Acc 2.2. The model predictions strongly correlated with the mean accu-
racy data in Fig. 5F (r(54) = .83, p< .001). In this experiment, associa-
tion strength between the target and correct color was again moderately
correlated with semantic distance (r(54) = .42, p = .001) and not sig-
nificantly correlated with perceptual distance (r(54) =−.02, p = .900).

Response time. As in Experiment 1, RT and accuracy were nega-
tively correlated (r(54) =−.82, p < .001), indicating it was easier to
make decisions for color pairs that facilitated accuracy. We analyzed
RTs using the same linear mixed-effect models from Experiment 1. The
first model including only perceptual distance and semantic distance
showed a significant effect of semantic distance and no effect of per-
ceptual distance (Table 2, model RT 2.1). Adding association strength
between the target and the correct color (model RT 2.2) resulted in
significant effects of association strength and semantic distance but still
not perceptual distance. Fig. 6D shows the predicted RTs based on the
regression weights in model RT 2.2. The model predictions strongly
correlated with the mean RTs in Fig. 6B (r(54) = .88, p < .001).

In summary, semantic distance dominated interpretability when
these two factors were uncorrelated overall. Perceptual distance had a
marginal effect, but it was in the opposite direction from what might
be expected (i.e., smaller perceptual distances tended to be more inter-
pretable). This was because the stimulus set included cases with strong
conflicts, such that large semantic distances amounted to small percep-
tual distances (especially for watermelon), and under such conflicts
greater semantic distance resulted in greater interpretability.

6 GENERAL DISCUSSION AND CONCLUSION

In this study we tested whether people’s ability to interpret color palettes
in information visualizations depended on semantic distance, indepen-
dent of perceptual distance. The results of both experiments demon-
strated that increasing semantic distance improved interpretability, in-
dependent of variation in perceptual distance. In Experiment 1, we
selected colors such that perceptual and semantic distance co-varied:
the four colors that were most strongly associated with cantaloupe
were clustered separately from the colors most strongly associated
with strawberry. Under these conditions, both semantic and perceptual
distance independently contributed to increased interpretability. In
Experiment 2, we selected the colors in a way that decoupled percep-
tual and semantic distance: the four colors that were most strongly
associated with mango were between the colors most strongly associ-
ated with watermelon on the a* plane of CIELAB space. Across all
color pairs in Experiment 2, perceptual distance and semantic distance
were uncorrelated, but there were cases in which these two factors
were in direct conflict (Fig. 1). In this experiment, accuracy and RT
both improved with increased semantic distance, with no significant
effects of perceptual distance. The results of this study suggest that it
may be worth relaxing constraints on perceptual distance in favor of
maximizing semantic distance to create interpretable color palettes.

We studied colors that were distant enough (∆E ≥ 25) to be no-
ticeably different [33, 34], but we expected that perceptual distance
would play a larger role if distances were smaller. However, if colors
were no longer perceptually discriminable, they would also no longer
be semantically discriminable. Thus, thresholding at some degree of
semantic distance may be sufficient to ensure both perceptual and se-
mantic discriminability. Certainly, there is some lower threshold at
which perceptual and semantic discriminability would be too small
for interpretability, but there also may be an upper threshold at which
further increasing perceptual or semantic discriminability would have
no further benefit. Substantial work has investigated lower thresholds

for perceptual discriminability for information visualizations [33, 34],
but future work is needed to understand thresholds for semantic dis-
criminability. Moreover, as in prior visualization work [33,34] we used
∆E as our perceptual distance metric, but future work could evaluate
whether different perceptual distance metrics (e.g., CIEDE2000) are
better at predicting interpretability.

As part of this study, we developed semantic distance, ∆S, as a
metric to quantify semantic discriminability between pairs of colors
and concepts. Semantic distance is the absolute difference in the prob-
abilities that a random observer will make each of the two possible
assignments, where the randomness is due to inherent variability in
association strengths across individuals. Quantifying semantic discrim-
inability becomes more difficult when there are more than two colors
or two concepts because there are more than two possible assignments.
Solving assignment problems becomes more complicated in this case,
and we cannot write a simple formula as in (2) to compute assignment
probabilities.2 Possible approaches for quantifying semantic discrim-
inability for more than two colors and concepts could involve obtaining
a distribution over possible assignments (e.g., via Monte Carlo simula-
tion), resulting from uncertainty in color-concept association ratings
and applying one of many possible metrics. For example, if we used
entropy, maximum entropy would correspond to the fragile case of all
assignments having equal probability. Conversely, minimum entropy
would correspond to the robust case of one assignment having a very
high probability and all other assignments having near-zero probability.

In this study, we used mean human color-concept association rat-
ings to quantify association strengths. However, efficient automated
approaches exist for estimating color-concept associations using im-
ages [19–21, 27] and natural language databases [13, 31]. Different
methods can be used to extract colors from images, but evidence sug-
gests methods that leverage perceptual dimensions of color and cogni-
tive representations of color categories are best for estimating human
color-concept associations [27]. Such estimates, combined with an ap-
propriate method for quantifying variance in the sample images, could
be used as input to calculate semantic distance.

The results of this study can help with designing interpretable color
palettes, but interpretability is only one of the many goals in color
palette design. Other priorities might include helping observers (1)
locate a target in visual search [9, 11, 14, 35, 38], (2) estimate the area
of colored regions [1, 8], (3) refer to the colors easily by name [15], (4)
appreciate the visualization aesthetically [8], or (5) obtain an affective
impression from the overall palette [2]. Different design properties
are relevant for these different priorities. For example, the ability to
estimate the relative area occupied by colored regions increases with
perceptual distance between colors, but aesthetic preferences for those
same visualizations decreases with perceptual distance [8]. Extensive
work is needed to understand how to navigate such trade-offs in palette
design, depending on the priorities and format of a given visualiza-
tion [2, 8, 19, 33]. The present work provides a step in that direction
by showing that maximizing perceptual distance is not necessary for
creating interpretable color palettes, leaving room for maximizing the
other factors that contribute to effective palette design.
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2Generally, solving a large assignment problem (many colors and concepts)
cannot be reduced to solving a sequence of smaller two-color two-concept
assignment problems. For example, the colors (red,yellow) and concepts (ap-
ple,banana) have a straightforward assignment, but if we add another color and
concept: (red,yellow,green) and (apple,banana,strawberry), then apple switches
from red to green due to the presence of strawberry.
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more perceptually similar colors, probably because colors that were
perceptually similar (e.g., w1 (red) and m2 (dark orange)) were seman-
tically different, whereas colors that were perceptually distant were
semantically similar (e.g., w1 (red) and w2 (green)) (Fig. 1).

When we added association strength between the target and correct
color into the model, association strength was a significant predictor, as
was semantic distance (Table 1, model Acc 2.2). The effect of percep-
tual distance was still marginal, again in the opposite direction (more
perceptually different tended to result in reduced accuracy). Fig. 5H
shows the predicted accuracy based on the regression weights in model
Acc 2.2. The model predictions strongly correlated with the mean accu-
racy data in Fig. 5F (r(54) = .83, p< .001). In this experiment, associa-
tion strength between the target and correct color was again moderately
correlated with semantic distance (r(54) = .42, p = .001) and not sig-
nificantly correlated with perceptual distance (r(54) =−.02, p = .900).

Response time. As in Experiment 1, RT and accuracy were nega-
tively correlated (r(54) =−.82, p < .001), indicating it was easier to
make decisions for color pairs that facilitated accuracy. We analyzed
RTs using the same linear mixed-effect models from Experiment 1. The
first model including only perceptual distance and semantic distance
showed a significant effect of semantic distance and no effect of per-
ceptual distance (Table 2, model RT 2.1). Adding association strength
between the target and the correct color (model RT 2.2) resulted in
significant effects of association strength and semantic distance but still
not perceptual distance. Fig. 6D shows the predicted RTs based on the
regression weights in model RT 2.2. The model predictions strongly
correlated with the mean RTs in Fig. 6B (r(54) = .88, p < .001).

In summary, semantic distance dominated interpretability when
these two factors were uncorrelated overall. Perceptual distance had a
marginal effect, but it was in the opposite direction from what might
be expected (i.e., smaller perceptual distances tended to be more inter-
pretable). This was because the stimulus set included cases with strong
conflicts, such that large semantic distances amounted to small percep-
tual distances (especially for watermelon), and under such conflicts
greater semantic distance resulted in greater interpretability.

6 GENERAL DISCUSSION AND CONCLUSION

In this study we tested whether people’s ability to interpret color palettes
in information visualizations depended on semantic distance, indepen-
dent of perceptual distance. The results of both experiments demon-
strated that increasing semantic distance improved interpretability, in-
dependent of variation in perceptual distance. In Experiment 1, we
selected colors such that perceptual and semantic distance co-varied:
the four colors that were most strongly associated with cantaloupe
were clustered separately from the colors most strongly associated
with strawberry. Under these conditions, both semantic and perceptual
distance independently contributed to increased interpretability. In
Experiment 2, we selected the colors in a way that decoupled percep-
tual and semantic distance: the four colors that were most strongly
associated with mango were between the colors most strongly associ-
ated with watermelon on the a* plane of CIELAB space. Across all
color pairs in Experiment 2, perceptual distance and semantic distance
were uncorrelated, but there were cases in which these two factors
were in direct conflict (Fig. 1). In this experiment, accuracy and RT
both improved with increased semantic distance, with no significant
effects of perceptual distance. The results of this study suggest that it
may be worth relaxing constraints on perceptual distance in favor of
maximizing semantic distance to create interpretable color palettes.

We studied colors that were distant enough (∆E ≥ 25) to be no-
ticeably different [33, 34], but we expected that perceptual distance
would play a larger role if distances were smaller. However, if colors
were no longer perceptually discriminable, they would also no longer
be semantically discriminable. Thus, thresholding at some degree of
semantic distance may be sufficient to ensure both perceptual and se-
mantic discriminability. Certainly, there is some lower threshold at
which perceptual and semantic discriminability would be too small
for interpretability, but there also may be an upper threshold at which
further increasing perceptual or semantic discriminability would have
no further benefit. Substantial work has investigated lower thresholds

for perceptual discriminability for information visualizations [33, 34],
but future work is needed to understand thresholds for semantic dis-
criminability. Moreover, as in prior visualization work [33,34] we used
∆E as our perceptual distance metric, but future work could evaluate
whether different perceptual distance metrics (e.g., CIEDE2000) are
better at predicting interpretability.

As part of this study, we developed semantic distance, ∆S, as a
metric to quantify semantic discriminability between pairs of colors
and concepts. Semantic distance is the absolute difference in the prob-
abilities that a random observer will make each of the two possible
assignments, where the randomness is due to inherent variability in
association strengths across individuals. Quantifying semantic discrim-
inability becomes more difficult when there are more than two colors
or two concepts because there are more than two possible assignments.
Solving assignment problems becomes more complicated in this case,
and we cannot write a simple formula as in (2) to compute assignment
probabilities.2 Possible approaches for quantifying semantic discrim-
inability for more than two colors and concepts could involve obtaining
a distribution over possible assignments (e.g., via Monte Carlo simula-
tion), resulting from uncertainty in color-concept association ratings
and applying one of many possible metrics. For example, if we used
entropy, maximum entropy would correspond to the fragile case of all
assignments having equal probability. Conversely, minimum entropy
would correspond to the robust case of one assignment having a very
high probability and all other assignments having near-zero probability.

In this study, we used mean human color-concept association rat-
ings to quantify association strengths. However, efficient automated
approaches exist for estimating color-concept associations using im-
ages [19–21, 27] and natural language databases [13, 31]. Different
methods can be used to extract colors from images, but evidence sug-
gests methods that leverage perceptual dimensions of color and cogni-
tive representations of color categories are best for estimating human
color-concept associations [27]. Such estimates, combined with an ap-
propriate method for quantifying variance in the sample images, could
be used as input to calculate semantic distance.

The results of this study can help with designing interpretable color
palettes, but interpretability is only one of the many goals in color
palette design. Other priorities might include helping observers (1)
locate a target in visual search [9, 11, 14, 35, 38], (2) estimate the area
of colored regions [1, 8], (3) refer to the colors easily by name [15], (4)
appreciate the visualization aesthetically [8], or (5) obtain an affective
impression from the overall palette [2]. Different design properties
are relevant for these different priorities. For example, the ability to
estimate the relative area occupied by colored regions increases with
perceptual distance between colors, but aesthetic preferences for those
same visualizations decreases with perceptual distance [8]. Extensive
work is needed to understand how to navigate such trade-offs in palette
design, depending on the priorities and format of a given visualiza-
tion [2, 8, 19, 33]. The present work provides a step in that direction
by showing that maximizing perceptual distance is not necessary for
creating interpretable color palettes, leaving room for maximizing the
other factors that contribute to effective palette design.
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2Generally, solving a large assignment problem (many colors and concepts)
cannot be reduced to solving a sequence of smaller two-color two-concept
assignment problems. For example, the colors (red,yellow) and concepts (ap-
ple,banana) have a straightforward assignment, but if we add another color and
concept: (red,yellow,green) and (apple,banana,strawberry), then apple switches
from red to green due to the presence of strawberry.
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