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Figure 1: Color-concept association distributions for concept pairs with large, medium, and small distribution differences, resulting in
high, medium, and low capacities for semantic discriminability, respectively (terms defined in Section 3). Color-concept association
ratings were collected in Experiment 1 for the UW-71 colors (colored stripes in the plots, sorted by CIE LCh hue angle).

Abstract— People’s associations between colors and concepts influence their ability to interpret the meanings of colors in information
visualizations. Previous work has suggested such effects are limited to concepts that have strong, specific associations with colors.
However, although a concept may not be strongly associated with any colors, its mapping can be disambiguated in the context of other
concepts in an encoding system. We articulate this view in semantic discriminability theory, a general framework for understanding
conditions determining when people can infer meaning from perceptual features. Semantic discriminability is the degree to which
observers can infer a unique mapping between visual features and concepts. Semantic discriminability theory posits that the capacity
for semantic discriminability for a set of concepts is constrained by the difference between the feature-concept association distributions
across the concepts in the set. We define formal properties of this theory and test its implications in two experiments. The results show
that the capacity to produce semantically discriminable colors for sets of concepts was indeed constrained by the statistical distance
between color-concept association distributions (Experiment 1). Moreover, people could interpret meanings of colors in bar graphs
insofar as the colors were semantically discriminable, even for concepts previously considered “non-colorable” (Experiment 2). The
results suggest that colors are more robust for visual communication than previously thought.

Index Terms—Visual Reasoning, Information Visualization, Visual Communication, Visual Encoding, Color Cognition

1 INTRODUCTION

Bananas are shades of yellow, blueberries are shades of blue, and can-
taloupes are shades of orange. It is well-established that color semantics
influences people’s ability to interpret information visualizations when
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those visualizations represent concepts that have specific, strongly as-
sociated colors (e.g., fruits). Such visualizations are easier to interpret
if concepts are encoded with strongly associated colors (e.g., bananas
encoded with yellow, not blue) [20, 31]. But, how often do real-world
visualizations really depict information about fruit, or other concepts
with specific, strongly associated colors? If color semantics mainly
influences interpretability for visualizations of concepts with specific,
strongly associated colors (as previously suggested [20, 33]), then sce-
narios in which color semantics matters would be severely limited.

The present study suggests people’s ability to infer meaning from
colors is more robust than previously thought. Conditions arise in
which people can interpret meanings of colors for concepts previously
considered “non-colorable”. Specifically this when the colors are se-
mantically discriminable. Semantic discriminability for colors is the
ability to infer unique mappings between colors and concepts based on
colors and concepts alone (i.e., without using a legend) [31]. This is
distinct from semantic interpretability, which is the ability to interpret
the correct mapping between colors and concepts, as specified in an
encoding system (for further discussion of this distinction, see [31] and
Supplementary Material Section S.7 in the present paper). The key
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question is, what determines whether it is possible to select semantically
discriminable colors for a set of concepts?

We address this question in semantic discriminability theory, a new
theory on constraints for generating semantically discriminable per-
ceptual features for encoding systems that map perceptual features to
concepts. We tested two hypotheses that arise from the theory. First,
the capacity to create semantically discriminable color palettes for a
set of concepts depends on the difference in color-concept associa-
tion distributions between those concepts, independent of properties
of the concepts in isolation (Experiment 1). Second, people can ac-
curately interpret mappings between colors and concepts for concepts
previously considered “non-colorable,” to the extent that the colors
are semantically discriminable (Experiment 2). We focus on color in
this study, but present the theory in terms of perceptual features more
generally because of its potential to extend to other types of visual
features (e.g., shape, orientation, visual texture) and features in other
perceptual modalities (e.g., sound, odor, touch).

Contributions. This paper makes the following contributions:
(1) We define semantic discriminability theory (Section 3) and test
hypotheses motivated by the theory in Experiments 1 and 2 (Sections
4-5), and (2) We define a new metric for operationalizing distribution
difference between sets of more than two concepts (Section 3.2) and
show that it predicts capacity for semantic discriminability (Section 4).

2 BACKGROUND

Color is a strong cue for signaling meaning in nature and some ar-
gue that color vision evolved for the purpose of visual communica-
tion [7,8,12,14,39]. Historically, discussions on the role of color seman-
tics in information visualization have tended to focus on few cases of
typical associations (e.g., red for hot, green for grass) [5, 28, 34]. More
recent work has sought to understand the potential and limitations of
using color to communicate meaning in visualizations [1, 2, 20, 31–33].
The semantics of color in visualizations operates on two main levels:
meaning of a color palette as a whole [1, 2, 15] and meaning of the
individual colors in a palette [20, 31–33]. We focus on meanings of
individual colors because that is central to the present work. People
have expectations about how colors will map onto concepts, and visual-
izations that violate those expectations are harder to interpret, even if
there is a legend [20, 30, 35]. Thus, understanding these expectations is
important for optimizing palette design for visual communication.

2.1 Color-concept associations
Color-concept associations represent the degree to which individual
colors are associated with individual concepts. Color-concept asso-
ciations can be quantified using various methods, including human
judgments [16, 17, 25, 27, 31, 32, 38], image statistics [20–22, 27, 33],
and natural language corpora [13, 33]. Some approaches focused on
identifying the strongest, or strongest few colors associated with a
concept [11, 13, 33], but color-concept associations can be treated as
a continuous property over all possible colors in a perceptual color
space [20–22, 27, 29]. When quantifying color-concept associations
over all of color space, researchers typically bin or sub-sample parts of
the space to make measurements computationally tractable. An assump-
tion is that the space is continuous, so nearby colors will have similar
associations. Figure 1 shows examples of color-concept associations
for colors systematically sampled over CIELAB space (see Experiment
1), plotted over one dimension (sorted by hue angle and chroma with
achromatics at the beginning of the list). Perceptual color spaces are
three-dimensional so this representation does not necessarily position
perceptually similar colors in close proximity [41], but it does high-
light how some concepts, like peach and celery, have specific, strongly
associated colors, whereas other concepts, like driving and comfort,
are more uniform (Figure 1). We refer to this ‘peakiness’ property as
specificity of the color-concept association distributions.1

1Specificity is similar to color diagnosticity [37], but color diagnosticity
concerns whether a concept has a single strongly associated color [37], and
specificity concerns the degree to which a concept is associated with some colors
more than others in a color-concept association distribution.

Questions remain concerning how color concept-associations are
formed, but many have suggested that they are learned through experi-
ences [10, 16, 27, 38, 40] and may be continually updated through each
new experience in the world [29]. Some color-concept associations
are shared cross-culturally, and others are subject to cultural differ-
ences [16,17,38]. We will consider the role of cultural differences with
respect to the present work in the General Discussion.

Color-concept associations contribute to people’s expectations about
the meanings of colors in information visualizations [20, 31, 32], called
inferred mappings. However, associations and inferred mappings are
not the same, and sometimes they conflict [32]. We explain this point
in Section 2.3 on assignment inference.

2.2 Colorabilty scores
Some have suggested that the effectiveness of colors for encoding mean-
ing is limited to concepts that have strong associations with particular
colors [18, 20, 33]. This idea is explained by invoking colorability
scores, which broadly measure how strongly individual concepts can be
mapped to specific colors. Generally, concepts with specific, strongly
associated colors (‘banana’) are thought to be colorable, whereas more
abstract concepts, such as ‘comfort’ or ‘leisure’, that lack such strongly
associated colors, have been called non-colorable.

Different methods have been used to define colorability. Lin et
al. [20] quantified colorability by having participants assign colors
to concepts and rate the strength of the assignment. The mean of
these ratings over all colors for a concept was used to generate a col-
orability score for that concept. They found that participants were
better at interpreting bar charts when palettes were optimized for color
semantics compared to when palettes had the default Tableau color or-
dering, but this benefit was mostly limited to highly colorable concepts.
Setlur and Stone [33] quantified colorability with an automated method,
using Google N-grams to determine how frequently a concept word
co-occurred with basic color terms [3] in linguistic corpora. They then
excluded concepts they found to be non-colorable when developing
methods to optimize palette design.

These prior studies highlighted the importance of considering color
semantics in palette design. However, our work suggests that restricting
notions of colorability to concepts in isolation may have led to underes-
timating people’s ability to infer meaning from colors in visualizations.

2.3 Assignment inference
Evidence suggests that people’s inferences about the meanings of col-
ors in encoding systems of visualizations do not merely depend on
color-concept associations in isolation. We illustrate this point with an
example from Schloss et al. [32]. Participants saw pairs of unlabeled
bins and were asked to choose which bin was for the target concept
written at the top of the screen. Figure 2 shows two examples when
trash was the target concept. The other concept, not pictured here but
judged on other trials, was paper. To the left of the example trials
are bipartite graphs, which use line thickness to represent the associa-
tion strength between each concept (trash, T, and paper, P) and each
color in the corresponding trial. An easy way to approach this task
would be to choose the color that is most strongly associated with trash
within each trial (local assignment). Alternatively, participants could
choose the color that results in maximizing association strengths of all
color-concept pairings across trials (global assignment).

In the top row of Figure 2, these two approaches lead to the same
outcome. Locally, trash is more strongly associated with dark yellow
(Y) than white (W). Globally, the assignment trash-yellow/paper-white
has a larger overall association strength than trash-white/paper-yellow.
Not surprisingly, participants inferred trash is mapped to dark yellow.
However, in the bottom row, the two approaches lead to opposite
outcomes. Locally, trash is more associated with white than purple
(Pu), but globally the assignment trash-purple/paper-white has a larger
overall association strength (greater total thickness of edges) than trash-
white/paper-purple. Participants inferred that trash maps to purple,
even though white was a more strongly associated alternative. Each
trial was independent, so participants need not account for paper on
trials for trash, but they did so nonetheless. This example highlights the
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Figure 2: Distinction between color-concept associations and inferred
mappings (figure based on [32]). Left: Bipartite graphs show color-
concept association strengths for concepts trash (T) and paper (P) with
colors dark yellow (Y), white (W), and purple (Pu) (thicker edges
connecting concepts and colors indicate stronger associations). Right:
example trials where participants infer which color maps to trash.

important distinction between color-concept associations for a single
color and concept, and inferred mappings between a color and concept
in the context of an encoding system.

Schloss et al. [32] called this process of inferring mappings between
colors and concepts assignment inference because it is analogous to an
assignment problem in optimization. In assignment problems, every
possible pairing of items in one category (e.g., colors) i and another
category (e.g., concepts) j is given a numerical merit score mi j. Here,
let’s assume that larger scores indicate a more desirable pairing, but
that is not always true (e.g., to optimize delivery route efficiency, merit
might be delivery time and smaller scores would be better). Solving an
assignment problem means finding the pairing of items that maximizes
(or minimizes) the sum of the merit scores of all chosen pairs [6,19,23].

Although assignment inference is analogous to assignment prob-
lems, they are not the same. Assignment problems have deterministic
results, whereas assignment inference is stochastic—inferred map-
pings can vary among individuals and even within individuals over
time. This stochasticity can be explained in terms of noise in people’s
color-concept associations affecting the outcome of assignments in
assignment inference, depending on whether assignments are robust or
fragile [31]. In robust assignments, adding noise to the system (e.g.,
perturbing the color-concept association strengths) has no effect on
the outcome, but in fragile assignments adding noise can change the
outcome of the assignment.

The robustness of an assignment in assignment inference can be
understood as semantic discriminability—the ability for people to infer
a unique mapping between colors and concepts [31]. Evidence sug-
gests that semantic discriminability predicts people’s ability to interpret
colors in encoding systems, independent of that predicted by perceptual
discriminability and color-concept associations in isolation [31]. We de-
scribe ways of operationalizing semantic discriminability in Section 3.2
as they pertain to the present study.

So far, we focused on encoding systems with two concepts and
colors, and implied that merit mi j in assignment inference is color-
concept association strength (Figure 2). However, there are other
possible ways to define merit, especially when there are more than
two colors and concepts, as in the present study. Schloss et al. [32]
sought to understand which merit people use in assignment inference
to study (1) how humans infer meaning from colors, and (2) how to
design palettes that match people’s expectations, making palettes more
interpretable. To approach this goal, they created two definitions of
merit. The isolated merit function simply uses association strengths
between items i and j, mi j := ai j. The balanced merit function is
defined as

mi j := ai j−max
k 6= j

aik. (1)

The balanced merit score for a given color-concept pair is the associa-
tion strength for that pair, minus the association strength between that
color and the next most strongly associated concept. In order for mi j
to be large, color i should be strongly associated with concept j and
weakly associated with all other concepts. (Note: in the case of two
concepts and colors these two definitions reduce to the same outcome.)

Next, they generated color palettes using an assignment problem
under each definition, with human color-concept association ratings
as the input. Finally, they presented different participants with those
palettes in the form of six unlabeled colored bins. Participants inferred
which bin was for each of six objects: paper, plastic, trash, metal,
compost, and glass. Responses were scored as “correct” interpretations
if they matched the encoded mapping. Encoded mappings can be
produced in different ways, including by designers, software defaults,
or optimization algorithms [20, 31, 32]. Here, they were determined by
the optimal assignments in assignment problems used to generate the
palettes. The logic was that participants would be better at interpreting
palettes generated using a merit function that more closely matched
merit in assignment inference. Performance was better for the palette
generated using the balanced merit function, which suggests that this
was the function that better captured merit in assignment inference.
Thus, we use balanced merit in the present study.

Balanced merit can lead to unexpected assignments. For example,
the bin for plastic was assigned a red color, even though red was weakly
associated with plastic, because that color was more associated with
plastic than with any of the other concepts. Thus, the assignment of
plastic–red was interpretable. Given that weakly associated colors
can prove useful when designing encoding systems, approaches that
focus only on the top associates may be limited [11]. It is important to
quantify associations between concepts and a large range of colors, not
just the top few associates, when optimizing palette design [27].

3 SEMANTIC DISCRIMINABILITY THEORY

Semantic discriminability theory characterizes the ability to generate
semantically discriminable perceptual features for encoding a set of
concepts. We begin with some key definitions.

Concept set: This is the set of all concepts that are represented in
an encoding system. These concepts could refer to any information that
is categorical (e.g., food, weather, activities, places, and animals). We
label concepts in the concept set using the index j ∈ {1,2, . . . ,n}.

Feature source: This is the set of all possible instances of a feature
type. Perceptual color spaces (e.g., CIELAB) are well-defined feature
sources for color, as they represent all colors humans can perceive [41].

Feature library: This is a subset of candidate features from the
feature source used in an encoding system. For example, the Tableau 20
colors or UW-58 colors [27] are feature libraries if design is constrained
to those groups of colors. We focus on a feature library defined over
color, but they can be defined over any type of perceptual feature (e.g.,
shapes, sizes, textures). We label features in the feature library using
the index i ∈ {1,2, . . . ,N}.

Feature set: This is a subset of features from the feature library,
selected to encode a concept set. Feature sets can be constructed from
any type of perceptual features (e.g., colors, shapes, sizes) [4]. For
colors, they are called “palettes.” If there are n concepts, then the
feature set should contain n features.

3.1 Feature-concept association distributions

Feature-concept association distributions represent the degree to which
a given concept is associated with each feature in a feature library
(see Figure S.5A. in the Supplementary Material). For color, these are
color-concept association distributions. Feature-concept association
distributions can be described as raw association values over the feature
library (e.g., mean ratings, pixel counts, word counts). In this case, we
write ai j to denote the association between feature i ∈ {1, . . . ,N} and
concept j ∈ {1, . . . ,n}. For each concept j, we also define normalized
associations p j(·) as

p j(i) :=
ai j

∑
N
k=1 ak j

for: i ∈ {1, . . . ,N}. (2)

The list
[
p j(1) p j(2) · · · p j(N)

]
can be interpreted as a discrete

probability distribution over features in the feature library.
We now define useful properties and operations related to feature-

concept association distributions.



3.1.1 Specificity
Specificity is the degree to which a concept has strong, specific associa-
tions with features over the feature library. For color, specificity refers
to the ‘peakiness’ of a color-concept association distribution. Concepts
can have strong color associations that are concentrated in one part
of color space (e.g., reds for concepts like raspberry) or divided over
different parts of color space (e.g., reds and greens for watermelon) [27].
Thus, we quantify specificity using entropy of the distribution, which
captures how ‘flat’ vs. ‘peaky’ a distribution is, regardless of how many
peaks there are.

Entropy for a feature-concept association distribution is defined as:

H j :=−
N

∑
i=1

p j(i) log p j(i). (3)

If all features in the feature library are equally associated with con-
cept j, the distribution p j will be uniform, entropy will be high, and
specificity will be low. If a concept j is strongly associated with some
features and not others, then entropy will be lower and specificity will
be higher. This property of color-concept association distributions
aligns with previous measures of colorability [20, 33] (see Figure S.2
in the Supplementary Material).

Mean entropy of a concept set is the mean of the entropy of all
concepts in the set: Hµ := 1

n (H1 + · · ·+Hn).

3.1.2 Distribution difference
We quantify distribution difference between concepts by comparing
their normalized feature-concept associations.

Total variation (TV) is what we use when comparing two concepts,
say j1 and j2. TV is defined as follows.

TV( j1, j2) :=
1
2

N

∑
i=1

∣∣p j1(i)− p j2(i)
∣∣ . (4)

TV ranges between 0 and 1, where TV = 0 means the two distributions
are identical, and TV = 1 means they are disjoint (for each feature i,
either p j1(i) or p j2(i) must be zero).

Generalized total variation (GTV) is a generalization of TV that
we defined for cases when more than two concepts must be compared,
say j1, . . . , jk. We define GTV as follows.

GTV( j1, . . . , jk) :=−1+
N

∑
i=1

max(p j1(i), p j2(i), . . . , p jk (i)). (5)

In the case where k = 2, GTV reduces to TV. In other words,
GTV( j1, j2) = TV( j1, j2). For details on the motivation behind our
definition of GTV, see the Supplementary Material, Section S.6.

3.1.3 Structure-agnostic property
The notions of entropy, TV, and GTV are agnostic to intrinsic structure
of the feature source. For example, perceptual color spaces are struc-
tured according to perceptual similarity, but entropy of a color-concept
distribution depends on the fraction of the colors that are highly asso-
ciated with the concept, regardless of perceptual similarity. We chose
structure-agnostic metrics for specificity and distribution difference so
that semantic discriminability theory could readily generalize to feature
sources with less well-defined metric spaces (e.g., shape, texture, odor).

3.2 Semantic discriminability
As described in Section 2.3, semantic discriminability of perceptual
features is the ability to infer a unique mapping between features and
concepts. It is reflected in the degree to which inferred mappings vary
among individuals or within individuals between trials. We model this
variability by treating feature-concept associations as random variables.
Rather than solving an assignment problem using the mean ai j values,
we look at the probability of the likeliest assignment, where probability
is computed with respect to uncertainty in the ai j. We now make this
notion more precise.

Semantic distance is a way to operationalize semantic discrim-
inability in the case where there are n = 2 features and concepts [31].

Figure 3 illustrates an example in which we have concepts {M,W} and
colors {1,2}. The color-concept associations between all possible pairs
are x1, . . . ,x4, as shown in Figure 3. We assume each xk is normally
distributed with mean x̄k equal to the corresponding ai j and standard
deviation σk = 1.4 · x̄k(1− x̄k), which was found to be a good fit to
experimental data [31]. The outcome of the assignment problem is
determined by the quantity ∆x := x1− x2 + x3− x4. The optimal as-
signment is: (M-1 and W-2 if ∆x > 0) and (M-2 and W-1 if ∆x < 0).
Semantic distance is defined by the equation

∆S = |Prob(∆x > 0)−Prob(∆x < 0)|. (6)

Since the xk are assumed to be normally distributed, so is ∆x, and the
probabilities in (6) can be computed analytically:

Prob(∆x > 0) = Φ

 (x1 + x4)− (x2 + x3)√
σ2

1 +σ2
2 +σ2

3 +σ2
4

 , (7)

and Prob(∆x < 0) = 1−Prob(∆x > 0), where Φ(·) is the cumulative
distribution function (cdf) of the standard normal distribution. When ∆S
is close to 0, ∆x has a similar probability of being positive or negative,
so the assignment is fragile. When ∆S is close to 1, ∆x is almost always
positive or almost always negative, so the assignment is robust. This
notion of semantic distance can be used even when the features are not
colors, by replacing the color-concept associations with feature-concept
associations, and adjusting the formula for σk as appropriate.

-2 -1 0 1 2

Distribution of Δx = (x1 +  x4) – (x2 +  x3)
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Figure 3: Diagram from [31] that shows how association ratings be-
tween concepts {M,W} and colors {1,2} produce a distribution for ∆x.
Semantic distance is the absolute difference of the area under the curve
to the left and right of zero.

Generalized semantic distance is an extension of semantic dis-
tance to the case where there are n > 2 features and concepts. In this
case, there will be n! (n factorial) possible assignments. We define
generalized semantic distance in a manner analogous to semantic dis-
tance; we label the feature-concept associations between all possible
pairs as x1,x2, . . . ,xn2 and assume they are normally distributed random
variables.2 In this more complicated scenario, the assignment is not
determined by a simple quantity such as ∆x and no formula analogous
to (7) exists to determine the assignment. Instead, we use the following
Monte Carlo approach.

1. Sample x1, . . . ,xn2 from the distribution of merit scores2 and solve
an assignment problem using the sampled merit scores.

2. Repeat step 1 a large number of times and count the number of
times each distinct assignment occurs. Let p be the proportion of
times that the most frequent assignment occurred. Since there are
n! possible assignments, we must have 1

n! ≤ p≤ 1.
2Here, we use color-concept association ratings, so we assume the xk are

distributed with the same σk used to define semantic distance [31]. In principle,
the distributions of the xk can be changed to suit other cases beyond color.
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3. The generalized semantic distance ∆S is defined as a linear rescal-
ing of p to ensure that 0≤ ∆S≤ 1. The formula is:

∆S =
n!p−1
n!−1

. (8)

A similar Monte Carlo approach was used in [32] to predict the results
of assignment inference in a recycling task (6 concepts and 6 colors).

Just like semantic distance, generalized semantic distance is a num-
ber between 0 and 1, where a larger number indicates more robust
assignments, and consequently, higher semantic discriminability. We
use the same symbol ∆S for both notions of distance because in the case
where n = 2, generalized semantic distance is (on average) equal to
semantic distance, and the approximation becomes exact as the number
of samples in step 2 tends to infinity. Conversely, in the limit n→ ∞,
we have ∆S→ p and the rescaling in (8) has no effect.

Semantic contrast is similar to generalized semantic distance, ex-
cept it estimates the proportion of times a given color is assigned to the
“optimal” concept (compared to all other assignments). This estimation
is computed using the Monte Carlo method described earlier, with
optimal defined by the solution to an assignment problem using the
balanced merit function computed on feature-concept associations.

For a given concept, the optimal color for that concept may have
higher semantic contrast in one context and lower semantic contrast
in another context, depending on the other colors and concepts in the
encoding system. A concept set that has higher capacity for semantic
discriminability (Section 3.3) should enable higher semantic contrasts
among colors in its optimal palette.

The steps to computing semantic contrast are: (1) Solve an assign-
ment problem (see Section 2.3) using the mean association ratings
x̄1, . . . , x̄n2 . We call this the optimal assignment. (2) Sample x1, . . . ,xn2

from the distribution of merit scores and solve an assignment problem
using the sampled merit scores. (3) Repeat step 2 a large number of
times and count the proportion of times each feature was assigned to
the same concept as in the optimal assignment This proportion is each
feature’s semantic contrast.

3.3 Capacity for semantic discriminability
Capacity for semantic discriminability is the extent to which it is pos-
sible to produce semantically discriminable features for a given set of
concepts. We operationalized capacity for semantic discriminability
(capacity for short), using max capacity. This is a scalable measure
that returns the semantic distance of the most semantically discrim-
inable feature set for a concept set, given a feature library.

To compute max capacity for a given concept set, we solve an
assignment problem using the balanced merit function (Section 2.3)
over the entire feature library. This yields a feature set. We define max
capacity as the (generalized) semantic distance of this feature set for the
given concept set. High max capacity indicates that the feature library
contains at least one feature set with high semantic discriminability for
the concept set. Low max capacity indicates no such feature set exists
for that concept set, at least given the feature library.

In the case of two concepts, the balanced merit approach for comput-
ing max capacity gives the same result as exhaustively computing the
semantic distance for each pair of colors, then finding the maximum
of those semantic distances. Using balanced merit, though, allows
max capacity to scale easily; it can be efficiently computed for large
concept sets and feature sets. We also explored alternative ways to
operationalize capacity (see Supplementary Material Section S.4).

3.4 The theory
Semantic discriminability theory posits that the capacity to produce
semantically discriminable perceptual features for a set of concepts
depends on the difference in feature-concept association distributions
over a feature library. Briefly, distribution difference predicts capacity,
distinct from the contribution of specificity. This idea differs from previ-
ous approaches, which primarily focused on color-concept associations
for concepts in isolation when evaluating the potential to meaningfully
encode particular concepts using color [20, 33].

Figure 1 shows the distinction between distribution difference and
specificity of color-concept associations, with respect to capacity. It
includes concept sets with large, medium, and small distribution dif-
ferences. Capacity is illustrated with histograms below each concept
set. They show the frequency of color sets across values of semantic
distance (2485 possible 2-color sets from the UW-71 color library),
with an arrow pointing at maximum semantic distance. Concept sets
with large, medium, and small distribution differences result in high,
medium, and low capacity, respectively. Yet, the concepts with medium
capacity (driving and comfort) have far lower specificity than concepts
with low capacity (eggplant and grape). The reason that concepts with
low specificity can result in higher capacity than concepts with high
specificity is that semantic discriminability depends on the difference
in merit of each possible set of feature-concept assignments, not just
isolated feature-concept associations (Section 2.3).

Figure 4 further illustrates this point with hypothetical color-concept
association distributions for 2-concept sets that have higher capacity
(top row) and lower capacity (bottom row). The colored dots on the dis-
tributions indicate the optimal assignment according to balanced merit
(though this is arbitrary when the distributions are parallel because all
assignments are equally poor). Next to each distribution pair is a his-
togram of semantic distances (as in Figure 1) and a bipartite graph for
the colors with maximum semantic distance (thicker edges connecting
colors and concepts indicate greater merit). Semantic distance (∆S) is
indicated below the bipartite graphs, and can be visually inspected by
comparing the total merit of the outer edges vs. inner edges and assess-
ing the degree to which one sum is larger. When distribution difference
is high (top row), capacity is high, even if one concept has a uniform
distribution (i.e., no specificity). However, when distribution difference
is lower (bottom row), capacity is lower, even if both concepts have
high specificity.

We chose the particular examples in Figure 1 and Figure 4 to high-
light the dissociation between distribution difference and specificity,
but we systematically tested for effects of these factors on capacity in
Experiment 1.



4 EXPERIMENT 1
Experiment 1 tested the hypothesis that capacity for semantic dis-
criminability is predicted by distribution difference, independent of
specificity. We first collected color-concept association data from
human participants, and used those data to calculate capacity, dis-
tribution difference, and specificity. We then tested our hypothe-
sis on 2-concept sets (Section 4.2.1) and 4-concepts sets (Section
4.2.2). Semantic discriminability predicts people’s ability to interpret
palettes in visualizations [31], so our modeling approach for under-
standing capacity for semantic discriminability should have implica-
tions for interpretability. The code and data for all experiments is at:
https://github.com/SchlossVRL/sem_disc_theory.

4.1 Methods
4.1.1 Participants
185 undergraduates participated for credit in Introductory Psychology
(mean age =18.66, 99 females, 86 males, gender provided through
free-response). All gave informed consent and the UW–Madison IRB
approved the protocol. Color vision was assessed by asking participants
if they had difficulty distinguishing between colors relative to the aver-
age person and if they considered themselves colorblind. Participants
were excluded if they answered yes to either (5 excluded).

4.1.2 Design, Displays, and Procedure
Participants judged the association between each of 71 colors and each
of 20 concepts. The colors were the UW-71 color library, an extension
of the UW-58 colors [31], see Supplementary Material for details and
Table S.1 for CIELAB coordinates.3 The concepts were from Lin et
al. [20], including 5 concepts in each of four concept categories (fruits,
vegetables, activities, and properties) (Table 1). Participants were
randomly assigned to one of four categories (fruits n = 46, vegetables
n = 45, activities n = 45, properties n = 44). They judged all colors for
all five concepts within their assigned category (71 colors × 5 concepts
= 355 trials). Trials were presented in a blocked randomized design—
all colors were presented in a random order for a given concept before
starting the next concept, and concept order was also randomized.

The displays included the concept word centered at the top of the
screen (font-size: 24 pt, font-family: Lato) and colored square centered
below (80 px × 80 px). Below the colored square, was a line-mark
slider scale (400 px long), with the left end labeled “not at all” and the
right end labeled “very much” and the center marked with a vertical line
(3 px wide and 32 px tall). The background was gray (CIE Illuminant
D65, x = .3127, y = .3290, Y = 10 cd/m2), so that very dark colors
(e.g., black) and very light colors (e.g., white) could be seen against the
background. Data were recorded in pixel units, and scaled to range from
0-1. Displays were generated using the jsPsych JavaScript library [9],
presented on participants’ personal devices.

Participants were told they would see a set of concepts and series
of colors, one concept and color at a time. Their task was to rate how
much they associated the color with the concept by moving the slider
on the scale from “not at all” to “very much”, and clicking “next” to
continue. Before beginning, they were shown a list of all concepts
and the UW-71 colors. They were asked to anchor the endpoints of
the rating scale for each concept [26] by thinking about which color
they associated the most/least with that concept, and considering these
colors as representing the ends of the slider scale for that concept.
During the experiment, ratings were blocked by concept, and after each
block participants were told how many blocks remained.

4.2 Results and Discussion
4.2.1 2-Concept sets
We began by calculating the mean color-concept association ratings
over participants. Next, for all k = 2 concepts out of the n= 20 concepts

3We converted CIELAB to RGB using MATLAB’s lab2rgb function, which
makes assumptions about monitor characteristics, so the colors were not exact
renderings of CIELAB coordinates. Without calibration, the colors rendered by
RGB coordintes may vary across monitors, but using a fixed correspondence
between D65 CIELAB and RGB can approximate intended colors online [36].

Table 1: Full set of concepts in Experiment 1 (first four columns of
concepts were used in Experiment 2).

Category Concepts

Fruits peach cherry grape banana apple
Vegetables corn carrot eggplant celery mushroom
Activities working leisure sleeping driving eating
Properties efficiency speed safety comfort reliability
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Figure 5: Relations between capacity for semantic discriminability
and distribution difference (log(normalized (generalized) total variation
distance); left) and specificity (log(1− normalized mean entropy); right)
for 2-concept sets (top) and 4-concept sets (bottom). For 4-concept sets
we downsampled from 4845 points to 500 points to avoid overplotting.

in Table 1 (190 2-concept sets in total), we used the mean color-concept
associations to calculate capacity for semantic discriminability, dis-
tribution difference, and mean specificity. To calculate capacity, we
followed the method in Section 3.3. To calculate distribution difference,
we used total variation (TV) in Equation (4) and normalized the TV
values to range from 0 to 1. To calculate mean specificity, we first
computed entropy (H) for each concept (Equation (3)) over N = 71
colors, and then computed the mean entropy over concepts within each
set. Given that higher specificity corresponds to lower entropy, we
normalized mean entropy to range from 0 to 1 and subtracted the scores
from 1, such that larger numbers indicated higher specificity. Figure
S.2 in the Supplementary Material shows the raw entropy for each
concept. Concepts with lower entropy/higher specificity corresponded
to colorable concepts in [20], and concepts with higher entropy/lower
specificity corresponded to non-colorable concepts in [20].

Figure 5A shows the relation between capacity for semantic dis-
criminability and distribution difference (left), and mean specificity
(right). For both distribution difference and mean specificity, we plotted
the log of the normalized scores to preserve linearity. The correlation
between capacity and distribution difference over all 190 2-concept
sets was strongly positive (r(188) = .93, p < .001), with a strong trend
for capacity to increase with increased distribution difference. The cor-
relation between capacity and mean specificity was also significantly
positive (r(188) = .82, p < .001), but was significantly weaker than the
correlation with distribution difference (Fisher’s r-to-z transformation
z(188) = 4.85, p < .001). This weaker correlation can be attributed, in

https://github.com/SchlossVRL/sem_disc_theory


Table 2: Multiple linear regression predicting capacity for semantic
discriminability from distribution difference and mean specificity for
all 2-concept sets and 4-concept sets.

Model Factor β SE t p

2-concept Intercept .867 .005 181.9 < .001
Distribution diff. .160 .010 15.6 < .001
Specificity .002 .010 .201 .841

4-concept Intercept .772 .002 483.8 < .001
Distribution diff. .235 .004 53.6 < .001
Specificity −.112 .004 −25.5 < .001

part, to there being concept sets with high capacity, despite moderate to
low mean specificity, and concept sets with low capacity despite high
mean specificity (Figure 5, right).

To examine whether distribution difference and mean specificity con-
tributed independently to capacity, we used a multiple linear regression
model to predict capacity from these two factors (z-scored to center
them and put them on the same scale). As shown in Table 2, distribution
difference was a strong significant predictor, and mean specificity was
not significant. Thus, the variance explained in capacity by distribution
difference was independent from mean specificity, and mean specificity
did not contribute after accounting for distribution difference.

4.2.2 4-Concept sets

For all k = 4 concepts out of the n = 20 concepts in Table 1 (4845
4-concept sets in total), we used the mean color-concept associations
to calculate capacity, distribution difference, and mean specificity, as
described in Section 4.2.1 for 2-concept sets. However, instead of
semantic distance to compute capacity we used generalized semantic
distance (Section 3.2), and instead of using TV to compute distribution
difference, we used GTV (Equation 5, Section 3.1.2).

Figure 5B shows the relation between capacity for semantic discrim-
inability and distribution difference (left), and mean specificity (right)
for 4-concept sets. As for 2-concept sets, we used the log of the nor-
malized distribution difference and mean specificity scores to preserve
linearity. Capacity was positively correlated with both distribution dif-
ference (r(4843) = .74, p < .001) and mean specificity (r(4843) = .61,
p < .001), but the correlation with distribution difference was greater
(Fisher’s r-to-z transformation (z(4843) = 11.88, p < .001).

Using the same regression analysis as for 2-concept sets, distribution
difference was a strong significant predictor (Table 2). Mean specificity
a weak significant predictor, but surprisingly it was negative, such that
less specificity resulted in greater capacity in the context of this model.

In summary, Experiment 1 supports the hypothesis that the capac-
ity to produce semantically discriminable color palettes for a set of
concepts depends on the difference in color-concept association distri-
butions, independent of specificity. Considering specificity of color-
concept associations in isolation is insufficient. These results emphasize
the importance of considering relative color-concept associations for
a given set of concepts, rather than the concepts in isolation, when
evaluating the potential for semantically discriminable color palettes.

5 EXPERIMENT 2

Semantic discriminability theory implies that if concept sets have high
capacity for semantic discriminability, it should be possible to create
encoding systems assigning those concepts to colors that people can
interpret. People should be able to interpret the correct mappings
between colors and concepts, even for concepts previously considered
“non-colorable,” insofar as the colors are semantically discriminable.
We tested this hypothesis in Experiment 2. We defined accuracy as the
proportion of responses that matched the optimal mapping specified by
an assignment problem using the balanced merit function (see Section
S.7 in the Supplementary Material for a further discussion on accuracy,
and its relation to measures of semantic discriminability).

5.1 Methods
5.1.1 Participants

98 participants (74 males, 24 females) were recruited on Amazon
Mechanical Turk. All gave informed consent, and the UW–Madison
IRB approved the protocol. Eight were excluded for not reaching 100%
accuracy on catch trials (Section 5.1.2), three of which reported atypical
color vision. All other participants reported typical color vision.

5.1.2 Design, Displays, and Procedure

For each trial, participants were presented with a bar graph centered on
the screen, consisting of four colored bars (Figure 6A). Each bar was
130 px wide and varied in height randomly (from 260-300 px high).
The bars were spaced 45 px apart. At the start of the trial, a set of four
concepts (22 pt font) was centered above the graph in a random order.
The y-axis was unlabeled. Below the x-axis, there were empty boxes
120-px wide and 50 px high. During the trial, participants labeled each
bar by clicking on a label and dragging/dropping it in the empty box
below the bar. The displays were generated using the Charts.js and
jsPsych JavaScript libraries.

Each participant completed 64 trials, which included 8 color-concept
sets × 8 color positionings within each set. Figure 6B shows the
palettes for each set. The stimuli were constructed using displays like
in Figure 6A, but swapping out the concept sets and corresponding
color palettes, and balancing the bar color positioning as follows.
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Figure 6: (A) Example trial in Experiment 2. Participants labeled each
bar by clicking the label and dragging/dropping it in the box below
the bar. (B) Palettes and corresponding concepts used to construct the
stimuli (see text for details).

Concept sets. To generate the concept sets, we randomly selected
four concepts from each of the concept categories from Experiment 1
(fruits (F), vegetables (V), activities (A), properties (P)) and labeled



them 1-4 (Table 1, Figure 6B). We then tied pairs of concepts within
each category (e.g., V1-V2, V3-V4). We combined pairs of concepts
such that all participants saw (1) vegetables with fruits, (2) vegetables
with properties, (3) activities with fruits, and (4) activities with proper-
ties. Using this design, we created two groups of stimuli, divided over
two groups of participants to reduce the number of trials for any one
participant. Group 1 saw sets of four concepts, with concepts 1 and 2
in one category paired with concepts 1 and 2 in the other category (e.g.,
V1-V2 with F1-F2), and sets of four concepts with concept 3 and 4 in
one category paired with concepts 3 and 4 in the other category (e.g.,
V3-V4 with F3-F4). Group 2 saw the opposite pairings (e.g., V1-V2
with F3-F4, V3-V4 with F1-F2). Within this design, all participants saw
each concept an equal number of times. Participants were randomly
assigned to Group 1 (n = 47) or Group 2 (n = 43).

Color palettes. For each concept set, we generated its color palette
using the balanced merit function (Equation (1)) in an assignment
problem. The resulting assignments determined the encoded mapping
we defined as “correct.” We used the balance merit function because
previous evidence suggested it aligns with the merit people use in
assignment inference (see Section 2.3). Merit was computed over
the color-concept association data reported in Experiment 1 for all 71
colors in the UW-71 library 4 The color palettes are shown in Figure 6B.
The CIELAB coordinates for the palette colors can be found at https:
//github.com/SchlossVRL/sem_disc_theory. The graphs were
presented on a gray background approximating CIE Illuminant D65
(x = .3127, y = .3290, Y = 10, cd/m2).

Bar color positioning. Each of the eight color-concept sets for a
given group (Figure 6B) was presented eight times in eight bar color
positionings along the x-axis. This was done using a blocked random-
ized design, so all eight color-concept sets appeared once in a random
order, randomly assigned to a color positioning within a block, before
starting the next block. The eight possible color positionings were de-
fined using a Latin square design (four positionings, left/right reversed).
Thus, within a color set, each color appeared in each of four positions
twice, with the colors to its left/right in opposite positions.

Catch trials. We included eight catch trials, one per block, in which
bars were colored a shade of red, yellow, green, and blue, and the labels
were “red”, “yellow”, “green”, and “blue.” We set an a priori exclusion
criterion that participants must be 100% accurate on these catch trials,
otherwise their data would be excluded from analysis.

Participants were told they would see a series of colored bar graphs,
with four bars and four words at the top of the screen. Their task was
to match each word to its corresponding bar color by clicking and
dragging the label to the empty box below the bar. They were told to
use their best guess if they were unsure how to match the labels to the
bar colors. They then completed a practice trial with four concepts
that were not in the main experiment (blueberry, mango, strawberry,
lemon) and colors chosen by the balanced merit function. Associations
for these concepts had been collected for a different project. During
the trials, all bars had to be labeled before a “continue” button could
be pressed to go to the next trial. Once placed in a box, a label could
be dragged to another box and all labels could be reset to the starting
position by pressing a “reset label” button. Trials were separated by
a 100 ms. inter-trial interval. Participants received breaks after each
block, and were told the proportion of completed trials at each break.

5.2 Results and Discussion

For each participant, we calculated the proportion of times they chose
each concept for each color in each color-concept set, averaged over bar
color positioning. These results are shown for a subset of the concept
sets in Figure 7A (top row), and for all concepts sets in Figure S.6. For
each color-concept pairing, we calculated accuracy as the proportion of
trials in which participants selected the optimal pairing (defined with
respect to balanced merit) (Section S.7). The arrows below the x-axis
in Figures 7A and S.6 point up to the correct color.

4Due to a scaling issue during palette creation, 15 of the 64 color-concept
pairings were not optimal. This did not affect the analyses, but accuracy may
have been greater if participants had seen fully optimized palettes.

Table 3: Logistic mixed-effect model predicting accuracy from speci-
ficity of the concept, semantic contrast of the concept’s correct color,
and association between the concept and its correct color.

Fixed Effects βββ SE zzz ppp

Intercept 1.272 .176 7.249 < .001
Specificity .226 .088 2.577 .001
Semantic Contrast .645 .081 7.926 < .001
Association Strength −.064 .057 −1.12 .262

We first tested whether concept sets with higher capacity enabled
creating encoding systems that were easier to interpret. To do so, we
correlated max capacity for each of the 16 concept sets with mean ac-
curacy over all colors within each set. There was a significant relation
(r = .58, p < .02), indicating greater capacity for semantic discrim-
inability corresponded to greater interpretability.

Next, we tested whether participants’ patterns of color choices for
each concept were correlated with model predictions computed by
solving an assignment problem with perturbed association ratings (the
Monte Carlo process described in Section 3.2 over 1000 iterations).
These predictions are shown in the bottom row of Figure 7A and in
Figure S.6. In the model predictions, the height of the bars correspond
to the proportion of times each color was assigned to each concept.
The predictions strongly correlated with participant responses over the
full dataset of 4 colors × 16 4-concept sets (r(126) = .95, p < .001),
with high correlations for each group (Group 1: r(126) = .96, Group 2:
r(126) = .94, ps < .001).

Finally, we tested our hypothesis that participants would be able to
interpret the correct mappings between individual colors and concepts,
insofar as the colors were semantically discriminable. Figure 7A shows
that participants chose the correct colors well above chance, even for
concept sets in which all concepts have been called non-colorable (e.g.,
{sleeping, driving, safety, speed}. To examine whether accuracy for
given a concept varied depending on semantic discriminability of its
correct color, in 7B, we plotted accuracy for each concept as a function
of the semantic contrast of its correct color (see Section 3.2 and Section
S.7 for details on semantic contrast). Plots are separated by concept
category, with four points per concept, corresponding to the four color-
concept sets in which it appeared. Generally, the slopes of the best fit
lines for each concept were positive, indicating that accuracy increased
with semantic contrast. Responses for some concepts (e.g., fruits) were
highly accurate for all color-concept sets because their optimal colors
have high semantic contrast in all concept sets we tested.

We analyzed this pattern of accuracies using a mixed-effect logistic
regression model predicting accuracy for each concept in each set using
three factors: semantic contrast of the correct color for that concept
(relative to the other colors in the palette), specificity of the concept as
defined in Experiment 1, and association strength between the concept
and its correct color (previously shown to influence accuracy in similar
tasks [31, 32]). These predictors were calculated using data from
Experiment 1 (different participants from Experiment 2). We also
included by-subject random intercepts and by-subject random slopes
for each factor. We z-scored the individual predictors to put them on the
same scale and set the correlations between the random slopes to be 0
to help the model converge. As shown in Table 3, accuracy significantly
increased with greater semantic contrast and with greater specificity.
Association strength was not significant.

Overall, accuracy was greater for concepts previously considered
colorable (fruits and vegetables) (M = 0.76, SD = 0.23) than those
considered non-colorable (activities and properties) (M = 0.56, SD =
0.24) (Figure 7B). But, all activities and properties had at least one
instance that was as accurate as fruits and vegetables, and all instances
were above chance. Moreover, accuracy for a given concept varied
based on semantic contrast with its correct color, which cannot be
explained by specificity of the concept in isolation. These results
suggest that any concept has potential to be meaningfully encoded
using color if the color has sufficient semantic contrast with other
colors in the palette.

https://github.com/SchlossVRL/sem_disc_theory
https://github.com/SchlossVRL/sem_disc_theory
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6 GENERAL DISCUSSION AND CONCLUSION

In this paper we presented semantic discriminability theory to specify
constraints on producing semantically discriminable perceptual features
for visual communication. The theory states that capacity for creating
semantically discriminable features for a concept set is constrained
by the difference in feature-concept association distributions for those
concepts. Supporting the theory, Experiment 1 showed that distribution
difference between color-concept association distributions predicted
capacity for semantic discriminability in 2- and 4-concept sets, indepen-
dent of specificity. And, Experiment 2 indicated people can correctly
interpret mappings for concepts previously considered non-colorable,
but their ability to do so depended on semantic contrast with respect to
the other colors in the encoding system.

Semantic discriminability theory is rooted in feature-concept associ-
ations, which can vary cross-culturally [16, 17, 38]. The theory implies
that distribution difference will predict capacity for semantic discrim-
inability in different cultures, as long as the association distribution
data reflect the associations held by a given culture.

The theory further implies that any factor that influences distribution
difference for a set of concepts can affect capacity. Below, we propose
criteria for producing distribution differences that support adequate
capacity for semantic discriminability. Evaluating these criteria will
help guide future work on the potential and limitations of semantic
discriminability for colors and for other perceptual features.

Criterion 1: Need for some specificity. At least some concepts in
the concept set must have association distributions with some specificity.
If all concepts in a set have uniform distributions, there will be no
capacity for semantic discriminability (Figure 4). Some perceptual
features may not support specificity as well as color does, such as line
orientation. If so, such features might be less useful for communicating
meaning in information visualizations.

Criterion 2: Need for feature library variability. To be sensitive

to differences in feature-concept associations, if they exist, the feature
library must be sufficiently variable. In color, variability is achieved
by sampling widely over color space, as opposed to sampling say, only
the bluish part of the space. One can systematically sample over color
spaces because color spaces are well-defined feature sources. But, such
sampling may pose a challenge for less well-specified feature sources
(e.g., all possible shapes or all possible textures).

Criterion 3: Need for large enough feature library. The feature
library must be large enough to detect small, but important differences
between feature-concept association distributions. E.g., a library with
only two colors, a blue and red, might be large enough to produce
distinct association distributions for the concepts sky and rose, but a
library with more colors (e.g., more shades of blue) would be needed to
produce distinct distributions for concepts like noon sky and night sky.

Conclusion. We presented and evaluated semantic discriminability
theory to define constraints on creating semantically discriminable
features for perceptual encoding systems. The theory implies that
any concept has potential to be meaningfully encoded using color, if
the criteria above are met. Thus a concept that has low specificity
(i.e., uniform distribution), can meaningfully be encoded by a color, if
other concepts in the set have sufficiently different distributions. This
is possible because people infer globally optimal mappings between
colors and concepts, even if that means inferring concepts map to
weakly-associated colors. The theory implies, and our results suggest,
color is more robust for visual communication than previously thought.
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S SUPPLEMENTARY MATERIAL

S.1 UW-71 Colors
In this study, we used a color library called the UW-71 (Figure S.1). It
is based on the UW-58 colors used in [27, 31], but extends to include
lighter yellows and greens. The UW-58 colors includes 58 colors uni-
formly sampled over CIELAB space (edge distance of ∆E = 25, rotated
of axis by 3 degrees to increase the number of colors, as described
in [27]). To obtain the UW-71, we sampled an additional plane of
colors at lightness L = 88 with ∆E = 25. This provided 13 more colors,
shown in the top plane of Figure S.1.
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Figure S.1: UW-71 colors plotted in CIELAB space.

S.2 Color-concept associations
Figure S.5A shows the mean color-concept association ratings col-
lected in Experiment 1 (Section 4). Participants rated how much they
associated each color from the UW-71 color library with each of 20
concepts. In this figure, the order of the UW-71 colors along the x-axis
was obtained by sorting the colors according to CIE LCh hue angle
with achromatic colors being placed at the beginning of the list. Figures
S.5B shows a transformation of the data from Figure S.5A, turning
mean ratings for each concept into a discrete probability distribution.
This was done following the normalization process described in Section
3.1. When we calculated entropy and (Generalized) Total Variation,
we used data in this distribution form. Figure S.5C shows the same
data from Figure S.5B, sorted from high to low probability within each
concept. In this sorted format, it is easier see how color-concept associ-
ations vary in specificity for different concepts. We quantify specificity
using the entropy of the distribution, as described in Section 3.1.

S.3 Operationalizing specificity using entropy
Figure S.2 shows the entropy for each concept, computed on the nor-
malized color-concept association distributions (Figure S.5 B). The
concepts are ordered from high specificity (low entropy) to low speci-
ficity (high entropy), with example sorted association distributions at
varying levels of specificity. The top half of the concepts with high
specificity correspond to concepts that Lin et al. [20] called “colorable,”
and the bottom half with low specificity correspond to concepts that
they called “non-colorable”.

Concepts in Figure S.5C that have a steeper slope of descending
mean association probabilities have lower entropy and higher specificity.
If one looks at the corresponding plots for each concept in Figure S.5B
and entropy scores in Figure S.2, it can be seen that a concept can
have multiple peaks at different locations (such as eggplant) or a single
peak (such as celery) and still have similar entropy (similar slopes of
ordered mean association probabilities). This comparison highlights
how entropy is agnostic to any arbitrary ordering of colors and captures
the ’peakiness’ or ’flatness’ of the distributions.
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Figure S.2: Entropy over color-concept association distributions (left)
computed over the UW-71 color library, and examples of low- and
high-entropy normed color-concept association distributions with color
sorted from high to low association (right). All of the concepts above
the dashed line were considered colorable and the concepts below the
dashed line were considered non-colorable in [20].

S.4 Operationalizing capacity

We considered four ways of operationalizing capacity for semantic
discriminability: (1) Maximum semantic distance (computationally
identical to maximum capacity), (2) Mean semantic distance, (3) Me-
dian semantic distance, and (4) Proportion of semantic distances greater
than some threshold (threshold capacity). For 2-concept sets, we
computed all possible semantic distances for each possible color set
(from the UW-71 library) within each concept set. We then compared
mean(∆S), median(∆S), and max capacity by computing the correla-
tions between each pair of metrics for all possible feature sets within
all possible concept sets. Each correlation was strong (max and mean:
r(188) = .86,p < .001; max and median: r(188) = .78, p < .001;
mean and median: r(188) = .98, p < .001), so those three metrics were
similar.

To assess threshold capacity, it is necessary to define a value of ∆S
to be used as the threshold. Figure S.3 shows the relation between the
choice of threshold value for threshold capacity and the correlations
between the resulting threshold capacity and TV (solid line) and mean
entropy of the concept set (dashed line). The blue line shows that the
standard deviations of the ∆S values decrease as threshold increases.
This decrease is expected because the average number of ∆S values
greater than some threshold will decrease the higher the threshold is.
When the criterion for threshold is very high, only color sets with
extremely high ∆S are above the threshold and thus there is very little
variability in the values as is indicated by the blue curve. Thus, at
very high ∆S criteria, there is too little variability in capacity for its
correlations with total variation and entropy to be interpreted. Moreover,
prior work has shown that people’s accuracy at interpreting encoding
mappings change very little for palettes with ∆S values higher than
0.7 [31]. Due to these observations in addition to the lack of a principled
way to pick a threshold for our data, we opted not to use threshold
capacity.



In the case where n (number of concepts in a set) is large, it is not
feasible to compute max, mean, median, (or threshold) via exhaustive
computation of all possible semantic distances. So, we considered two
options: (1) Compute semantic distance of the concept set with respect
to the full feature library. In other words, extend the definition of
generalized semantic distance from Section 3.2 to this work. (2) Solve
an assignment problem using the full feature library. Compute semantic
distance of the resulting feature set. This is the max capacity we ended
up using. Both of these approaches are scalable and computable even
for large n. The problem with the first option is that as the feature
library gets larger, we would want capacity to increase; having more
features can make design easier. However, the opposite happens. As
more features are added, generalized semantic distance gets smaller
because perturbing the feature-concept associations leads to a large
number of equally good assignments, which spreads out the probability
distribution. We used the second option (max capacity) because it only
involves computing semantic distance of a feature set (size n) and will
not decrease if we add more features to the feature library.
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Figure S.3: The effect of varying the threshold for semantic distance on
non-signed correlations between total variation and threshold capacity
(solid black) and mean entropy and capacity for semantic discrim-
inability (dashed black). The blue line shows the standard deviation of
semantic distances greater than the threshold changes as a function of
the threshold. When the semantic distance criterion is 0 or 1, both of
the correlations are undefined (there is no variability in capacity).

S.5 Total Variation

Computing total variation distance (TV) is computed by taking the
difference between two color-concept association distributions (Fig-
ure S.4C), taking the absolute value of that difference (Figure S.4D),
summing over the elements from the result (Figure S.4E), and halving
the resulting value (not shown). This is equivalent to taking half of
the L1-norm of the difference between two color-concept association
distributions.

S.6 Generalized Total Variation

Total variation distance (TV) has the following statistical interpretation.
Suppose the true color distribution for a given concept is p(·). That is,
for any color i, p(i) is the normalized association rating between our
given concept and color i. The true p is unknown, but we have two
candidate distributions p1 and p2 (each with prior probability 1

2 ). Our
task is to determine whether the true distribution is more likely to be
p1 or p2, based on observing a single sample from p. In other words,
the only information we have is a color i drawn at random according
to p. To minimize our probability of error, we should pick the likeliest
candidate, which is the one for which the probability of observing i is
largest. In other words, if p1(i) > p2(i), we would infer that p = p1,

peach
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peach – celery�
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1.12

Figure S.4: The color-concept distributions for peach (A) and celery
(B), the difference (C) between those two distributions, the absolute
value (D) of that difference, and the sum of the elements in the result
(E). Half of the final number would be the TV computed for peach and
celery.

and vice versa. On average, the probability of estimating correctly
using this maximum-likelihood estimator is given by:

prob(error) = 1− 1
2 ∑

i
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= 1− 1
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2
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When TV = 0, the two distributions are identical, and prob(error) = 1
2 ,

so we are at chance. If TV = 1, the maximum possible value of TV,
prob(error) = 0. This corresponds to the case where the probability
distributions have disjoint support; for every i, either p1(i) = 0 or
p2(i) = 0. So when i is observed, we know with certainty which of the
p j must have generated it.

If we generalize the statistical interpretation of TV above in a nat-
ural way, we obtain what we call generalized total variation (GTV).
Specifically, if we instead have n candidate distributions p1, . . . , pn, the
average probability of error when picking the likeliest distribution from
a single sample is

prob(error) = 1− 1
n ∑

i
max(p1(i), . . . , pn(i))

=

(
1− 1

n

)
− 1

n
GTV.



In other words, we define GTV as:

GTV =−1+∑
i

max(p1(i), . . . , pn(i))

When GTV = 0, again the distributions are all identical, and our prob-
ability of error is 1− 1

n because we are at chance (we only have a
1
n chance of choosing correctly). When GTV = n− 1, its maximum
possible value, the n distributions have mutually disjoint support, so for
every i, at most one of the p j(i) is nonzero, which allows us to know
with certainty which p j generated the sample, and the probability of
error is zero.

When n = 2, we get GTV = TV, which generalizes the standard
definition of total variation distance. The trivial case n = 1 also makes
sense, because here GTV = 0 and the probability of error is also zero.

Although there are many notions of statistical distance for com-
paring pairs of distributions, TV being among the simplest, there are
very few published techniques for comparing several distributions. One
example is the Fréchet mean [24, p. 136]. To the best of our knowledge,
our definition of generalized total variation is new.

S.7 Distinctions between Semantic Distance, Semantic
Contrast, and Accuracy in Experiment 2

Generalized semantic distance is an operationalization of semantic
discriminability with respect to an entire color palette. It estimates
the probability of inferring the most-likely unique mapping between
colors and concepts, compared with all other possible mappings in an
encoding system (Section 3.2).

For example, imagine a visualization depicting three concepts—
apple, banana, and blueberry—with three colors—red, yellow, and blue.
If we were to solve an assignment problem using the balanced merit
function and raw association scores between all three colors and all
three concepts the most likely unique mapping would be: apple-red,
banana-yellow, and blueberry-blue. If we repeatedly added random
noise to the associations used as input and solved the assignment prob-
lem (using a Monte Carlo process), we can compute the probability
of this most likely assignment compared to all other assignments (e.g.,
apple-yellow, banana-blue, blueberry-red, etc.).

Generalized semantic distance estimates people’s expectations about
which colors map to which concepts, regardless of the “correct” assign-
ment specified by the designer of an encoded system.

Semantic contrast is also an operationalization of semantic dis-
tance, with respect to a single color relative to all other colors in a
palette. It estimates the probability of inferring the optimal color-
concept assignment for that color, where optimal is determined by an
assignment problem using the balanced merit function. In the apple,
banana, blueberry example above, the semantic contrast for, say, apple
would be the proportion of times red was assigned to apple, compared
to all other concepts.

Like semantic distance, semantic contrast estimates which color
maps to which concept, regardless of the “correct” assignment specified
by the designer of an encoding system.

Accuracy is the degree to which people’s interpretations of an cod-
ing system of a visualization match the encoded mapping—the “correct”
assignment between colors and concepts specified by the designer. In
some cases, the encoded mapping is explicitly specified by legends,
labels, or other verbal descriptions, but encoded mappings can still
exist in the absence of such explicit specifications.

In Experiment 2 of the present study, we (designers) specified that the
encoded mapping was the optimal mapping, generated by an assignment
problem using the balanced merit function. Thus, accuracy for a given
concept in a given concept set was the proportion of times participants
chose the optimal color for that concept. We chose this definition of
accuracy because previous work suggested assignments according to
the balanced merit function match people’s expectations (or inferred
mappings). By matching people’s expectations, these palettes should
help people be as accurate as possible. We aimed to create conditions in
which participants could be as accurate as possible to test the hypothesis
that encoded mappings exist in which people can correctly interpret
mappings for “non-colorable” concepts.

The conditions of Experiment 2 present a special case in which
semantic contrast can be thought of as a model for accuracy. This
is because both semantic contrast and accuracy are defined with re-
spect to assignments using the balanced merit function. However, this
correspondence between accuracy and semantic contrast is not neces-
sary. If the encoded mapping is defined in a different way that did not
align with the optimal assignment (e.g., a default palette order from
standard software), then semantic contrast would no longer estimate
accuracy. For example, one could define the encoded mapping in the
earlier example as follows: apple-yellow, banana-blue, blueberry-red.
In this case, the semantic contrasts remain unchanged however people’s
accuracies would be close to 0 for all colors (in the absence of a legend)
because the encoded mapping heavily conflicts with people’s inferred
mappings. Thus, semantic contrast is always an operationalization of
semantic discriminability, but not necessarily an operationalization of
interpretability.

If one wanted a general operationalization of interpretability, they
could adapt the method used to compute semantic contrast so that
instead of estimating the probability of the optimal solution, it esti-
mates the probability of the correct solution, according to the encoded
mapping in an encoding system.

Additionally, if it were the case that there was a way of defining
merit scores used in the assignment problem that estimated people’s
inferred mappings better than the balanced merit function, then our
metrics including generalized semantic distance and semantic contrast
could be defined with respect to this merit function to better capture
human behavior.
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Figure S.5: (A) Mean color-concept association ratings for all 20 concepts and the UW-71 colors. Each row corresponds to a different concept
category (fruits, vegetables, activities, features). (B) Color-concept probability distributions as described in 3. The heights of the bars sum to 1 for
each concept. (C) Color-concept probability distributions with colors sorted from high to low probability.
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Figure S.6: Responses from participants (left) and assignment predictions based on Monte Carlo sampling with perturbed color-concept association
(right) for participant groups 1 and 2. Each pair of bar plots corresponds to one of the color-concept sets from Experiment 2. The solid black line
across each graph corresponds to making an assignment by chance (.25). The correct response for each object is marked along the x-axis by an
arrow. Error bars represent the ± standard errors of the means.



Table S.1: Coordinates for the University of Wisconsin 71 (UW-71) colors in CIE 1931 xyY space and CIELAB color space. The white point
used to convert between CIE 1931 xyY and CIELAB space was CIE Illuminant D65 (x = 0.313, y = 0.329, Y = 100). The ’Sorted Position’
column indicates the index of the color when the colors are sorted by hue angle and chroma as can be seen in Figure 1 and Figures S.5A and S.5B.

Color Sorted Position x y Y L* a* b*
1 50 0.178 0.140 18.42 50 28.89 −73.59
2 53 0.174 0.083 4.42 25 53.86 −72.28
3 54 0.217 0.136 18.42 50 53.86 −72.28
4 55 0.259 0.131 18.42 50 78.82 −70.97
5 46 0.187 0.192 18.42 50 2.62 −49.93
6 51 0.191 0.130 4.42 25 27.58 −48.62
7 52 0.231 0.184 8.42 50 27.58 −48.62
8 57 0.255 0.123 4.42 25 52.55 −47.32
9 56 0.279 0.176 18.42 50 52.55 −47.32

10 61 0.328 0.167 18.42 50 77.51 −46.01
11 45 0.224 0.284 48.28 75 −23.66 −26.27
12 47 0.208 0.214 4.42 25 1.31 −24.97
13 48 0.245 0.254 18.42 50 1.31 −24.97
14 49 0.263 0.274 48.28 75 1.31 −24.97
15 58 0.286 0.199 4.42 25 26.27 −23.66
16 59 0.298 0.241 18.42 50 26.27 −23.66
17 60 0.303 0.262 48.28 75 26.27 −23.66
18 62 0.369 0.181 4.42 25 51.24 −22.35
19 63 0.353 0.226 18.42 50 51.24 −22.35
20 64 0.408 0.211 18.42 50 76.21 −21.04
21 44 0.238 0.357 72.07 88 −49.93 −2.62
22 43 0.253 0.351 18.42 50 −24.97 −1.31
23 42 0.269 0.345 48.28 75 −24.97 −1.31
24 41 0.275 0.343 72.07 88 −24.97 −1.31
25 6 0.313 0.329 0 0 0 0
26 5 0.313 0.329 4.42 25 0 0
27 4 0.313 0.329 18.42 50 0 0
28 3 0.313 0.329 48.28 75 0 0
29 1 0.313 0.329 100.00 100 0 0
30 2 0.313 0.329 72.07 88 0 0
31 67 0.410 0.291 4.42 25 24.97 1.31
32 68 0.374 0.305 18.42 50 24.97 1.31
33 69 0.357 0.312 48.28 75 24.97 1.31
34 66 0.434 0.281 18.42 50 49.93 2.62
35 65 0.492 0.257 18.42 50 74.90 3.93
36 40 0.270 0.433 48.28 75 −51.24 22.35
37 39 0.276 0.418 72.07 88 −51.24 22.35
38 36 0.308 0.524 4.42 25 −26.27 23.66
39 33 0.316 0.444 18.42 50 −26.27 23.66
40 32 0.317 0.410 48.28 75 −26.27 23.66
41 31 0.317 0.399 72.07 88 −26.27 23.66
42 20 0.418 0.450 4.42 25 −1.31 24.97
43 17 0.382 0.407 18.42 50 −1.31 24.97
44 16 0.364 0.386 48.28 75 −1.31 24.97
45 15 0.357 0.379 72.07 88 −1.31 24.97
46 10 0.522 0.377 4.42 25 23.66 26.27
47 9 0.447 0.370 18.42 50 23.66 26.27
48 8 0.410 0.362 48.28 75 23.66 26.27
49 7 0.509 0.333 18.42 50 48.62 27.58
50 70 0.566 0.299 18.42 50 73.59 28.89
51 38 0.297 0.577 18.42 50 −52.55 47.32
52 35 0.310 0.503 48.28 75 −52.55 47.32
53 34 0.313 0.479 72.07 88 −52.55 47.32
54 28 0.368 0.525 18.42 50 −27.58 48.62
55 28 0.360 0.471 48.28 75 −27.58 48.62
56 26 0.356 0.453 72.07 88 −27.58 48.62
57 22 0.437 0.472 18.42 50 −2.62 49.93
58 19 0.409 0.439 48.28 75 −2.62 49.93
59 18 0.399 0.427 72.07 88 −2.62 49.93
60 13 0.502 0.421 18.42 50 22.35 51.24
61 12 0.457 0.407 48.28 75 22.35 51.24
62 11 0.563 0.373 18.42 50 47.32 52.55
63 71 0.618 0.330 18.42 50 72.28 53.86
64 37 0.300 0.564 72.07 88 −78.82 70.97
65 29 0.343 0.561 48.28 75 −53.86 72.28
66 30 0.345 0.532 72.07 88 −53.86 72.28
67 24 0.394 0.521 48.28 75 −28.89 73.59
68 25 0.389 0.500 72.07 88 −28.89 73.59
69 23 0.444 0.481 48.28 75 −3.93 74.90
70 21 0.432 0.467 72.07 88 −3.93 74.90
71 14 0.492 0.443 48.28 75 21.04 76.21
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