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Fig. 1: In this study, participants inferred which region of colormaps (left/right) represented more of a domain concept (e.g., ocean
water). Inferences can be predicted by simulating assignment inference using a weighted combination of multiple (sometimes
competing) sources of “merit”: direct associations and relational associations (dark-is-more bias).

Abstract—People have expectations about how colors map to concepts in visualizations, and they are better at interpreting visual-
izations that match their expectations. Traditionally, studies on these expectations (inferred mappings) distinguished distinct factors
relevant for visualizations of categorical vs. continuous information. Studies on categorical information focused on direct associations
(e.g., mangos are associated with yellows) whereas studies on continuous information focused on relational associations (e.g., darker
colors map to larger quantities; dark-is-more bias). We unite these two areas within a single framework of assignment inference.
Assignment inference is the process by which people infer mappings between perceptual features and concepts represented in
encoding systems. Observers infer globally optimal assignments by maximizing the “merit,” or “goodness,” of each possible assignment.
Previous work on assignment inference focused on visualizations of categorical information. We extend this approach to visualizations
of continuous data by (a) broadening the notion of merit to include relational associations and (b) developing a method for combining
multiple (sometimes conflicting) sources of merit to predict people’s inferred mappings. We developed and tested our model on data
from experiments in which participants interpreted colormap data visualizations, representing fictitious data about environmental
concepts (sunshine, shade, wild fire, ocean water, glacial ice). We found both direct and relational associations contribute independently
to inferred mappings. These results can be used to optimize visualization design to facilitate visual communication.

Index Terms—Visual reasoning, information visualization, colormap data visualizations, visual encoding, color cognition

1 INTRODUCTION

Imagine you are interpreting a bar chart and need to infer which colors
map to which concepts represented in the chart. Now, imagine instead
interpreting a colormap data visualization1 and you need to infer which
colors map to which quantities represented in the colormap.
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1Literature on visualizing continuous data using color has inconsistent termi-
nology. In this paper, “colormap” refers to a visualization that maps gradations

Traditionally, researchers studying the role of color semantics for
visual communication have treated these cases as two distinct problems.
One involves mapping colors to different categories in categorical in-
formation [18,22,36,38,41] and the other involves mapping gradations
of color to gradations of quantity in continuous data [8, 21, 35, 43]. In
both cases, a key goal is to understand people’s expectations about
the mappings between colors and concepts in visualizations (called
inferred mappings) because visualizations designed to match people’s
expectations are easier to interpret [14, 18, 22, 26, 35, 36, 38, 43, 50, 51].

Studies on visualizations of categorical information focus on direct
associations—the degree to which each color is associated with each
concept represented in the visualization. Methods have been developed
to use direct associations to optimize mappings between discrete colors
and concepts to facilitate visualization interpretability [18,22,36,38,41].

Studies on visualizations of continuous data focus on relational
associations—correspondences between relational properties of visual
features and relational properties of concepts. For example, observers
have a dark-is-more bias, inferring that darker colors map to larger
quantities [4, 8, 21, 35, 43]. This bias is relational because it depends

of colors to quantities (e.g., weather maps, neuroimaging maps, correlation ma-
trices). “Color scale” refers to the color gradient used to construct a colormap.
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on relative lightness, rather than particular colors in visualizations.
Although empirical studies of colormaps have focused on relational
associations and explicitly tried to avoid potential effects of direct
associations [21, 35, 43], direct associations likely play an important
role (see Samsel et al.’s [34] intuitive colormaps for environmental
visualizations).

In this paper, we aim to unite the study of direct and relational associ-
ations under a single framework of assignment inference. Assignment
inference is the process by which people infer mappings among vi-
sual features and concepts in visual encoding systems [38]. Previous
work on assignment inference focused on visualizations of categor-
ical information, showing that observers infer optimal assignments
(i.e., mappings) that maximize the total “goodness” of each possible
color-concept pair [22, 36, 38]. This “goodness” is called merit.

We propose that assignment inference also governs inferences about
the meanings of colors in visualizations of continuous data. In testing
this possibility, our work makes the following contributions: (1) We
broaden the notion of “merit” in assignment inference to include rela-
tional associations, and show that both relational and direct associations
influence inferred mappings for colormap visualizations. (2) We de-
velop a method for combining multiple (sometimes conflicting) sources
of merit for simulating assignment inference, and show that our method
effectively predicts inferred mappings for colormap visualizations.

2 BACKGROUND

In this section, we review previous work on color semantics in infor-
mation visualization. Following tradition, we discuss effects of direct
associations for visualizations of categorical information and relational
associations for visualizations of continuous data. We will unite these
two areas in Section 3 on our approach in the present study.

2.1 Direct associations and assignment inference
Direct associations (a.k.a. color-concept associations) are the degree to
which a color is associated with a concept. They are estimated using
various measures, including human judgments [1, 15, 24, 27, 31, 36, 38,
39, 49], image statistics [18, 19, 31, 41], and language corpora [13, 41].

Although direct associations influence inferred mappings between
colors and concepts in visualizations of categorical information [18,
22, 36, 38], direct associations and inferred mappings are not the same
thing. Cases arise in which people infer that a concept maps to a weakly
associated color, even when there are more strongly associated colors
in a visualization. This distinction is shown in Fig. 2A. The bipartite
graph (left) represents association strengths between each of two colors
(purple and white) and each of two concepts (trash (T) and paper (P)) in
an encoding system for recycling bins [38]. The thickness of the edges
connecting colors and concepts represents direct association strength
(thicker indicates stronger association). Trash is more associated with
white than with purple (thicker edges). Yet, when asked which colored
bin is for trash (Fig. 2A right), people choose purple. Why?

Evidence suggests the reason is that people approach this problem
using assignment inference, a process that considers all colors and con-
cepts in the scope of the encoding system [38]. Assignment inference
is analogous to solving an assignment problem in optimization [23]. In
Fig. 2A, the scope of the encoding system includes trash and paper,
even though paper was not relevant on this particular trial. Assign-
ment inference does not simply assign a color to the concept with the
strongest merit (for now, think of merit as direct association strength).
Instead, the process selects the combination of color-concept pairs
that maximizes total merit across all pairings. The total merit for the
T-purple/P-white assignment is greater than the alternative, T-white/P-
purple. Thus, observers infer that trash maps to purple, despite trash
being more strongly associated with white.

The ability to perform assignment inference depends on seman-
tic discriminability of the colors, given the concepts in the encoding
system. Semantic discriminability can be understood by analogy to per-
ceptual discriminability. Perceptual discriminability concerns how well
one can distinguish the appearance of different colors, whereas seman-
tic discriminability concerns how well one can distinguish the meaning
of different colors in the context of an encoding system [22, 36]. In
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Fig. 2: (A) Example of dissociation between associations and inferred
mappings from [38] (figure adapted from [22]). Bipartite graph rep-
resents associations for concepts trash (T) and paper (P) with colors
purple and white (thicker edges mean stronger associations). Observers
infer trash maps to purple even though trash is more strongly associated
with white, which is the optimal global assignment. (B) Color pairs
with high vs. low semantic discriminability for concepts watermelon
(W) and mango (M) from [36]. ∆S indicates semantic distance.

assignment inference, semantic discriminability is the degree to which
one assignment has greater merit than the alternative assignment(s). For
example, Fig. 2B shows color sets that differ in semantic discriminabil-
ity for the concepts mango (M) and watermelon (W) (data from [36]).
The red and orange set (left) has high semantic discriminability be-
cause the W-red/M-orange assignment has far greater merit than the
alternative. In contrast, the red and green set (right) has low semantic
discriminability because the W-red/M-green assignment is only slightly
better than the alternative. In their semantic discriminability theory,
Mukherjee et al. [22] specified constraints on the ability to design
semantically discriminable color palettes for a given set of concepts.

Semantic discriminability can be operationalized through a metric
called semantic distance (∆S) [22, 36], which uses merit to quantify
the degree to which any one assignment is better than alternative assign-
ment(s), while accounting for uncertainty in the system. We reproduce
the details for calculating semantic distance defined in [36] in Supple-
mentary Material Section S.2 of the present paper.

Simulating assignment inference. To simulate the outcome of as-
signment inference, it is necessary to (a) determine which assignment is
optimal according to an assignment problem [23] and (b) estimate the
probability of inferring any one assignment over all alternative assign-
ment(s), which is given by semantic distance. The combination of these
two pieces of information indicates which colors observers will map to
which concepts in assignment inference, and the probability that they
will infer that assignment. This method is effective for predicting how
people map colors to concepts for visualizations of categorical infor-
mation (e.g., recycling bin signage [38], bar charts [22, 36]), although
earlier work did not yet refer to “semantic distance” by name [38]. This
approach may also extend to inferences about properties of food and
beverage products based on coloring in package design [46].

Definitions of merit for direct associations. So far, we have treated
merit merely as direct association strength. However, there are multi-
ple methods to specify merit for direct associations, with some more
effective than others [38]. These different methods reduce to the same
outcome in encoding systems with two concepts and two colors, such
as those modeled in the present paper. Thus, we will withhold further
discussion of metrics for computing merit for direct associations here,
and we refer the interested reader to [38] and [22].

2.2 Relational associations
Relational associations are correspondences between relational prop-
erties of visual features (e.g., darkness, opacity, spatial arrangement)
and relational properties of concepts (e.g., concepts of greater or lesser
quantities). A fundamental aspect of relational associations is that they
are structure-preserving. Structure preservation arises when structural
properties between visual features correspond to structural properties
among the concepts to which they are mapped [3, 11, 14, 20, 29, 42, 50].



If particular relations among visual features are salient and certain
relations among represented features are salient, then correspondences
between these relations can be exploited to constrain the number of
potential inferred mappings. For example, people are sensitive to the
natural progression from lighter to darker shades and to the natural
progression from smaller to larger quantities. Lightness can be mapped
to quantities in many ways (see Fig. 3A for four of many possibilities),
but only two ways are structure preserving: darker colors map to
larger quantities (dark-more assignment) or lighter colors map to larger
quantities (light-more assignment). From the perspective of structure
preservation, both assignments are equally “good.” Any assignment
that scrambles the mapping of lightness values to quantities is not
structure-preserving and thereby is less “good.”

Yet, not all structure-preserving assignments are equally good in peo-
ples’ inferred mappings. People have biases prioritizing one structure-
preserving assignment over another [8, 21, 35, 43], discussed below.

Dark-is-more bias. The dark-is-more bias is the expectation that
darker colors map to larger quantities (“more” of what is being mea-
sured) [8, 21, 35, 43]. People have a robust dark-is-more bias when in-
terpreting colormaps without legends [8,21]2 and with legends [35,43].
Studying visualizations without legends, McGranaghan [21] asked par-
ticipants to interpret maps of U.S. states colored in shades of blue, and
found that participants inferred that darker blues mapped to “more.”
McGranaghan [21] was purposefully ambiguous about the concept rep-
resented in the visualization, stating that the maps represented different
amounts of “data” to avoid effects of direct color-concept associations.
Studying visualizations with legends, Schloss et al. [35] presented
participants with colormaps representing alien animal sightings, with
the assumption that people would not have direct associations with
these novel concepts. The legend either indicated dark-more encod-
ing (greater animal sightings mapped to darker colors) or light-more
encoding (greater animal sightings mapped to lighter colors). Over-
all, participants were faster at correctly interpreting the visualizations
when legends indicated dark-more encoding, compared to light-more
encoding, providing further evidence for the dark-is-more bias.

Opaque-is-more bias. The opaque-is-more bias is the expectation
that regions appearing more opaque represent larger quantities. This
bias is only applicable when visualizations appear to vary in opac-
ity [2, 35], such as in value-by-alpha maps [33]. When the opaque-
is-more bias is activated, it aligns with the dark-is-more bias on light
backgrounds but conflicts with the dark-is-more bias on dark back-
grounds. Under such conflicts, the opaque-is-more bias can cancel
or even override the dark-is-more bias, leading observers to infer that
lighter colors map to larger quantities [2,35]. When the opaque-is-more
bias is non-applicable (i.e., a visualization does not appear to vary in
opacity), the dark-is-more bias leads observers to infer that darker col-
ors map to larger quantities on both dark and light backgrounds [2, 35].

Hotspot-is-more bias. The hotspot-is-more bias is the expectation
that spatial regions that look like hotspots represent larger quantities in
data. Hotspots emerge in datasets like fMRI, EEG, and meteorological
data, in which extreme values are neighbored by less extreme values
in concentric ring-like patterns [40]. Sibrel et al. [43] found that the
dark-is-more bias dominated over the hotspot-is-more bias unless the
hotspot was highly salient. Still, when colormaps contained hotspots
that encoded larger quantities, they were easier to interpret when the
hotspot was dark than when it was light (i.e., dark-is-more bias) [43].

3 CURRENT APPROACH

Previous work on assignment inference focused on visualizations
of categorical information, where merit depends on direct associa-
tions [22, 36, 38]. We propose that assignment inference also governs
inferred mappings for visualizations of continuous data, where merit
may depend on both direct and relational associations. As such, assign-
ment inference would operate over multiple (sometimes competing)

2Although legends are a central part of colormap visualization grammar,
Christen et al. [7] found that journal articles often leave out legends. Thus,
studying colormaps without legends is relevant for real-world visualizations,
while also providing a direct window into people’s inferred mappings.

sources of merit to determine inferred mappings.
To test this possibility, we asked participants to infer the meanings of

colors in colormaps (Fig. 1), and then predicted their responses using
simulations of assignment inference. We studied inferred mappings
for colormaps without legends, similar to [8, 21].3 We assessed the
proportion of times participants inferred the darker region mapped
to “more,” depending on the domain concept and the color scales
used to construct the colormap. In Fig. 1, the domain concept is
ocean water, and participants indicated whether there was more ocean
water on the left or right of the maps. Colormaps were displayed on
a white background and avoided hotspot spatial structure to prevent
cases in which the dark-is-more bias conflicted with the opaque-is-more
bias [35] and hotspot-is-more bias [43]. In the General Discussion, we
discuss extending our approach to handle these additional biases.

Next, we consider how direct and relational associations can serve as
sources of merit for visualizations of continuous data, and how multiple
sources combine to produce inferred mappings in assignment inference.

3.1 Direct associations as a source of merit
Representing merit for direct associations in assignment inference for
visualizations of continuous data (Fig. 1) is analogous to representing
merit for direct associations for visualizations of categorical informa-
tion (Fig. 2). In the examples in Fig. 1, merit from direct associations
for the colormaps is illustrated in the bipartite graphs under the label
“direct associations.” In the bipartite graphs, circles represent the end-
point concepts (more ocean water; +O, and less ocean water; -O) and
squares represent the endpoint colors of color scales used to create the
colormaps. Edge thickness represents association strength between
each endpoint color and concept. From the perspective of merit from
direct associations alone, assignment inference simulations for the col-
ormaps in Fig. 1 predict that more ocean water should map to darker
blues in the top row and should map to lighter blues in the bottom row.

Although the colormaps represent continuous data (more vs. less
ocean water) with a continuous gradation of color, we simplify the
assignment problem by focusing on only the the endpoint concepts
and endpoint colors. As described in Section 2.1, merit for direct
associations can be computed in multiple ways, but they simplify to the
same outcome when there are two colors and two concepts [38]. By
limiting our simulations to the two endpoint colors and two endpoint
concepts, we can think about merit for direct color-concept associations
simply as association strength. This simplification assumes that colors
between the endpoints vary monotonically in association strength with
the domain concept (e.g., ocean water in Fig. 1).

3.2 Relational associations as a source of merit
To consider how relational associations can be represented as sources of
merit in assignment inference for visualizations of continuous data, we
first turn to Figs. 3B-C. In these bipartite graphs, edges connect each
possible color (shades from white to black) to each possible concept
(numeric values from 1 to 4). As indicated in Fig. 3B, only two pos-
sible sets of edges are structure-preserving with respect to the natural
orderings of quantity and lightness: the set representing dark-more
assignment (colored black) and the set representing light-more assign-
ment (colored blue). Edges within each structure-preserving assign-
ment receive more merit than edges that are not structure-preserving
(colored gray), assuming that each set of structure-preserving edges
is bound together (e.g., all blue or all black edges) and never a mix
(e.g. some blue and some black edges). Based on structure preservation
alone, dark-more and light-more assignments have equal merit, and
thus should not be semantically discriminable.

Fig. 3C shows merit from the combination of structure preservation
and the dark-is-more bias. The dark-is-more bias places additional
merit on structure-preserving edges representing dark-more assignment
(thicker edges in Fig. 3C). With greater merit on the dark-more as-
signment than light-more assignment, these two structure preserving

3This method requires fewer within-subject trials per condition than meth-
ods assessing inferred mappings for colormaps with legends, which require
counterbalancing legend conditions (see [35, 43]).
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Fig. 3: Illustrations of structure preservation. (A) A colormap assign-
ing lightness (light to dark) to quantity (1-4), with legends specifying
structure-preserving assignments (natural progressions of lightness cor-
respond to a natural ordering of quantities) vs. not structure-preserving
assignments (assignment of lightness to quantity is scrambled). Bipar-
tite graphs can code merit in terms of (B) structure preservation and
(C) structure preservation plus the dark-is-more bias.

assignments should be semantically discriminable. Given that treat-
ing the dark-is-more bias as a source of merit also implies structure
preservation, here forward, we focus on the dark-is-more bias.

Fig. 1 shows the dark-is-more bias represented as a source of merit
for the example colormaps about ocean water. From the perspective of
merit from the dark-is-more bias alone, assignment inference simula-
tions for these colormaps predict that more ocean water should map
to darker blues in the top row (consistent with direct associations) and
darker browns in the bottom row (conflicting with direct associations).

Like for direct associations, we reduced the problem to model only
the endpoint colors and concepts. This simplification ensured that the
edges from each potential structure-preserving set (dark-more and light-
more) are not mis-matched during simulations of inferred mappings.
Our approach assumes the colors in color scales used to construct
colormaps vary monotonically in lightness, which was true in the
present study (we return to this issue in the General Discussion).

3.3 Combining direct and relational sources of merit
We propose that assignment inference for visualizations of continuous
data can be simulated using a weighted sum over multiple sources of
merit. With knowledge on how much weight to put on merit from direct
associations (WA) and the dark-is-more bias (WD), we can combine
these sources of merit (combined merit bipartite graph in Fig. 1) and
use established methods for simulating assignment inference [22,36,38]
to predict inferred mappings. In the top row, these sources of merit
are consistent, and simulating assignment inference over combined
merit predicts observers will infer that darker colors map to larger
quantities. In the bottom row, these two sources of merit are conflicting.
Depending on the relative weight given to each source, they might
cancel each other out, or one might dominate over the other. The
weights used in Fig. 1 are based on the results of Exp. 3, with greater
weight on direct associations than on the dark-is-more bias (see Exp. 3
for details).

In this study we asked whether direct and relational associations inde-
pendently contribute to merit in assignment inference for colormap data
visualizations, and if so, what is their relative contribution? Answering
these questions enabled us to create a model that predicts people’s
inferred mappings, which can be used to help design colormaps that
facilitate visual communication.

4 EXPERIMENT 1
Experiment 1 investigated whether both direct and relational color-
concept associations contribute to inferred mappings for colormaps.
We addressed this question using colormaps depicting fictitious data
about two domain concepts, shade and sunshine. We chose these
concepts because the dark-is-more bias and direct associations would

B. UW-71 colors
Shade

Not at all Very much

Continue

A. Example association trial

Fig. 4: (A) Example association rating trial. The slider indicates a
slight association for the given purple color with the concept shade. (B)
The UW-71 colors as seen during the association task instructions.

be consistent for shade and conflicting for sunshine, allowing us to test
for independent effects of each factor.

4.1 Methods
We began by collecting direct color-concept association data for the
domain concepts shade and sunshine. We then used these data to
generate colormap stimuli to assess inferred mappings. Data, code,
and color coordinates for all experiments in this paper can be found at
https://github.com/SchlossVRL/assign-infer-colormaps.

4.1.1 Measuring direct color-concept associations
In the color-concept association task, participants were presented with
a concept word at the top of the screen (sunshine or shade) and a
colored square centered below (Fig. 4A). They rated how much they
associated the given concept with the given color by moving a slider
along a scale ranging from “not at all” (−200) to “very much” (200),
and clicking “continue” to begin the next trial. Each concept was rated
for each of the UW-71 colors [22] shown in Fig. 4B (see Table S.3 in
Supplementary Material for CIELAB coordinates). The UW-71 colors
include 58 colors uniformly sampled from CIELAB space (UW-58
from [31, 36]), plus 13 additional colors sampled at a higher lightness
plane to incorporate more saturated yellows and greens [22].

Our target sample size was n = 30 and we collected data from 35
Amazon mTurk workers given we expected several participants would
be excluded for failing the attention check, described below (35 total, 3
excluded). The final sample was n = 32 (mean age = 40 years old; 11
women, 21 men; gender assessed using free-response here and in all
subsequent experiments). All participants indicated normal color vision
when asked if they had difficulty distinguishing between colors relative
to the average person and if they considered themselves colorblind.
All participants of this and all subsequent experiments gave informed
consent and the UW–Madison IRB approved the protocol.

Before beginning the task, participants were shown the domain
concept words and all 71 colors (Fig. 4B). They were asked to identify
which color they associated most and least with each concept to anchor
the endpoints of the scale [30].The experiment was blocked by concept,
with shade and sunshine presented in a random order within the first two
blocks. The 71 colors appeared in a random order within each block.
Given our plan to use association ratings from this task to generate
stimuli for the colormaps task, we sought to include associations only
from participants who made careful judgments. Thus, we included
a third, attention check block for all participants and set an a priori
exclusion criterion (see Section S.3 in the Supplementary Material).

The displays of this and all subsequent experiments were created
using jsPsych [9]. All participants completed the experiments on their
own devices so the color coordinates were calculated using standard
assumptions about RGB displays. Thus, as is typical in color exper-
iments in visualization, which aim to be robust to variations across
displays [12, 22, 47, 48], the precise colors each participant saw varied
with the specifications of their monitors. This experiment took approxi-
mately 30 min. and participants were compensated $3.63. The mean
color-concept associations for sunshine and shade are shown in Fig.
S.4 of the Supplementary Material.
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4.1.2 Generating colormaps

To generate the colormaps for this experiment, we (1) specified eight
pairs of endpoint colors, (2) interpolated between the eight endpoint
colors to create color scales, and then (3) applied the colorscales to 10
underlying datasets to create colormap data visualizations (Fig. 5).

(1) We selected endpoint colors such that one color was lighter
(L) and the other was darker (D). For four endpoint pairs, association
difference was high—sunshine was far more associated with the light
than the dark endpoint, and shade was far more associated with the dark
than the light endpoint. For four other pairs, association difference was
low, which occurred when both colors were either weakly or moderately
associated with the domain concept.4 Within each level of association
difference, two endpoint pairs had a lightness difference of L∗ = 38,
and two had a difference of L∗ = 50. We tested multiple color pairs
for each condition to ensure our results were not specific to any one
color pair. We checked if the colors interpolated between the endpoints
varied (approximately) monotonically in direct association strength
for both sunshine and shade (i.e., the domain concept was not more
associated with the intermediate colors than with either endpoint)5. See
Supplementary Material Section S.4 and Fig. S.5 for details.

(2) Using these endpoint colors, we created eight color scales by
linearly interpolating eight steps between the light and dark endpoints
(interpolation computed in CIELAB space). The resulting color scales
had 10 steps, as in the stimuli from [35].

(3) Finally, we applied each of the eight color scales to 10 underlying
datasets, producing 80 colormap data visualizations. The underlying
datasets produced colormaps appearing as an 8× 8 grid, where one
side was biased to be lighter and the other side was biased to be darker.
Within the 10 underlying datasets, half produced colormaps in which
the left side was darker than the right side (as in Fig. 5), and the other
half produced colormaps in which the right side was darker (as in Fig.
1). A full set of 10 colormaps from one color scale are shown in Fig.
S.8 in the Supplementary Material.

The underlying datasets we used were previously used to generate
colormaps in [35]. The data ranged from 0-1, with values sampled from
eight discrete points along an arctangent curve with added noise. The
eight points corresponded to the eight columns of the colormaps. The
samples at each point were used to assign values to the rows within
each column of the colormap (see Supplementary Material Section
S.1 for further details). One endpoint of the color scale was assigned
a data value of 0 and the other endpoint a data value of 1, such that
the color scales corresponded to the full range of the underlying data.
Given that the data were evenly sampled along the arctangent curve, the
data represented in the colormaps evenly span the full data range. This
method of generating stimuli mitigates concerns about the dynamic
range of data variability being hidden in the data visualization [10, 52].

4Overall, mean association ratings increased with lightness for sunshine
(CIELAB L*) (r(69) = .71, p < .001) and decreased with L* for shade (r(69) =
−.79, p< .001), but some light colors were moderately associated with sunshine,
and some dark colors were moderately associated with shade. These properties
enabled us to generate colormaps that varied in association difference.

5Two color scales for shade did not meet our statistical criterion, due to a
coding error treating hue angle as radians instead of degrees. However, our
statistical criterion is a heuristic, and visual inspection suggested that the inter-
mediate colors still varied monotonically between the endpoints (Supplementary
Material Fig. S.6A), so we kept data for these color scales in the analysis.

4.1.3 Assessing inferred mappings for colormaps
In the colormaps task, participants were presented with colormaps
along with a domain concept (sunshine or shade). They were told
that the colormaps represented amounts of sunshine (or shade) from
various counties in a state. In some counties, there was more sunshine
(shade) on the left side of the county; in other counties, there was more
sunshine (shade) on the right side. Their task was to indicate whether
there was more sunshine (shade) on the left/right of the map by pressing
the left/right key on their keyboard.

Domain concept and color scale varied between-subjects, and partic-
ipants were randomly assigned to one of 16 groups (8 color scales × 2
domain concepts). Each participant judged all 10 colormaps for their
assigned domain concept and color scale, one at a time in a random
order. Trials were separated by a 500-ms inter-trial interval. The col-
ormaps (approx. 4cm × 4cm) appeared on a white square (approx. 9cm
× 9cm) in the center of a medium gray screen (size estimates using a
15.6in, 1920 × 1080 pixel monitor). Below each half of the colormap
was a horizontal line labeled “Left”/“Right” (Fig. 1).

Our target sample size was n = 192, n = 12 per group (sample size
based on a power analysis reported in Supplementary Material Section
S.6). The final sample was 187 mTurk workers (mean age = 38.9 years
old, 105 women, 82 men), after excluding n = 3 for atypical color
vision and n = 2 for not completing the experiment. The groups ranged
from 9− 13 participants due to how the experiment code automated
assignments to conditions while managing exclusions. The experiment
took approx. 5 min. and participants were compensated with $0.60.
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Fig. 6: (A) Predicted patterns of results in Exp. 1 if inferred map-
pings are influenced by only the dark-is more bias (left), only direct
associations (center), or both (right). (B) Results of Exp. 1, showing
the mean proportion of times the darker side was selected for maps
about sunshine (circles) and shade (triangles) as a function of signed
association difference. Mark colors represent endpoint colors in the
color scales and error bars represent standard errors of the means.

4.2 Results and Discussion
Fig. 6A shows potential patterns of inferred mappings if there was an
effect only of direct associations, only of the dark-is-more bias, or both.
The y-axis represents the proportion of times the darker side would be
chosen over all trials, as a function of signed association difference. Pos-
itive/negative association differences indicate the darker/lighter color is
more associated with the domain concept, respectively. Direct associa-
tions only predicts the probability of choosing the darker side would
increase monotonically as the darker side becomes more associated with



the domain concept. Dark-is-more only predicts participants would
always choose the darker side, regardless of association difference. If
both have an effect, then participants would choose the darker side
when the two biases are consistent (positive association differences) but
less likely to choose the darker side as the lighter side becomes more
associated with the domain concept (negative association differences).

Fig. 6B shows the mean proportion of times the darker side was
chosen, averaged over the 10 repetitions within each participant, and
then averaged over participants. The pattern of responses resembles the
predicted pattern if both the dark-is-more bias and direct associations
influenced inferred mappings. Participants almost always chose the
darker side for shade (association differences greater than zero), and
their likelihood of choosing the darker side decreased as the lighter side
became more associated with sunshine.

To test for independent effects of each potential source of merit,
we used a mixed-effect logistic regression model. Although we plot
the data in terms of the proportion of times participants chose the
darker side (Fig. 6B), this way of coding the data poses a problem for
including the dark-is-more bias as a predictor in a regression model,
given that there is no variability in the predictor (it predicts a response
of ‘1’ on every trial). Thus, we conducted a model to predict whether
participants chose the left side on each trial (1 = left, 0 = right), from a
predictor coding whether the left side was darker (1 = left darker, −1 =
right darker), and a predictor coding which side was more associated,
and by how much (scaled to range from −1 to 1; x-axis values in
Fig. 6B). Conducting models with respect to the left side is a standard
approach in psychophysics research, and is valid as long as the stimuli
are left/right balanced, as in the present stimulus set (see Section 4.1.2).

Participants were more likely to select the left side if it was more
strongly associated with the domain concept than the right side (B =
4.51,SE = 0.21;z = 21.22, p < .001) and if it was dark than light (B =
1.33,SE = 0.09;z = 15.46, p < .001) (dark-is-more bias). Thus, both
direct and relational associations influenced inferred mappings. See
Section S.7 in Supplementary Material for an additional analysis that
includes concept as a factor in the model.

Summary. Exp. 1 showed that direct associations and the dark-
is-more bias contribute independently to people’s inferred mappings.
When these two factors conflict (the domain concept is more associated
with the light endpoint than the dark endpoint) and the direct association
difference is large, direct associations override the dark-is-more bias.

5 EXPERIMENT 2
Given evidence that direct associations can override the dark-is-more
bias when they conflict and direct associations are strong, we conducted
Exp. 2 to test how much association difference was needed for direct
associations to fully override the dark-is-more bias. The results led us
to study effects of semantic distance for predicting inferred mappings.

5.1 Methods
The methods were the same as Exp. 1, except for two changes. First, we
only tested sunshine as the domain concept in order to focus on cases
where direct associations and the dark-is-more bias conflict. Second, we
included eight new color scales of intermediate association difference,
in addition to the original eight from Exp. 1 (16 color scales) (Fig. 7).

For the new color scales, we selected endpoint color pairs using the
association data from Exp. 1 with the same selection criteria (Sup-
plementary Material Section S.4). Two of the new color scales did
not meet our statistical criterion for monotonicity due to a coding er-
ror treating hue angle as radians instead of degrees (Supplementary
Material Fig. S.6B), and visual inspection showed that intermediate
colors were more associated with sunshine than the endpoints. Thus,
we excluded data from these two color scales from analysis.

We focused on association difference and allowed association
strength to vary (e.g., the same value of association difference could be
achieved if sunshine was moderately associated with the light endpoint
and weakly associated with the dark endpoint, or strongly associated
with the light endpoint and moderately associated with the dark end-
point). As in Exp. 1, each participant judged 10 colormaps constructed
from one of the 16 color scales (between-subjects).

Exp.1 & 2

Lighter more associated with domain concept

Exp. 2 only Exp.1 & 2

Dark

Light

Fig. 7: Color scales used in Exp. 2. From right to left, sunshine is
increasingly more associated with the light endpoint of the color scale.
The four leftmost and four rightmost color scales were used in Exp. 1.

Our target sample size was n = 640 (n = 40 per condition) based
on a power analysis (see Supplementary Material Section S.6). We
collected data until each condition reached at least 40 participants after
excluding those with atypical color vision (696 Amazon mTurk workers
in total, 41 excluded). We assessed color vision using the two self-
report questions in Exp. 1, plus responses to six digital Ishihara plates.
Participants were excluded if they answered yes to either question
and/or answered incorrectly for more than one of the six plates. The
final sample included 655 participants (mean age = 38.6 years old;
294 women, 358 men, 2 non-binary, 1 no report). The groups ranged
from 40−44 participants due to how the experiment code automated
assignments to conditions while managing exclusions. The experiment
took approximately 5 min. and participants were compensated $0.60.

5.2 Results and Discussion
Fig. 8A shows the mean proportion of times participants selected the
darker side for colormaps generated from each color scale (averaged
over the 10 colormaps judged by each participant, and then averaged
over participants). As in Exp. 1, direct associations were more likely
to override the dark-is-more bias as association difference increased
(r(12) = .85, p < .001). But, once association difference reached about
−.55, participants almost always inferred that the lighter side of the
colormaps mapped to more sunshine. Direct associations fully overrode
the dark-is-more bias, so further increasing association difference could
not further influence inferred mappings (floor effect). This observation
led us to ask, why would inferred mappings level off at around −.55?

One possibility is that participants approached this task using as-
signment inference, comparing each possible assignment (dark-more or
light-more), and inferring the assignment with greater merit. Once the
merit of one assignment is sufficiently greater than the alternative, the
colors reach maximal semantic discriminability. Then, further increas-
ing association difference has no further effect on assignment inference.
This limit may have been reached at an association difference of around
−.55. If so, then the plateauing function in Fig. 8A may become
linear when we replace the x-axis (signed association difference) with
simulations of assignment inference (Section 2.1).

To simulate assignment inference for each color scale, we first calcu-
lated semantic distance for each pair of endpoint colors (using equation
1 defined in [36] and reproduced in Supplementary Material Section S.2
of this paper). We then determined the optimal assignment (i.e., which
assignment had greater merit), and coded the outcome as dark-more =
+1 and light-more = −1. Last, we multiplied this coding by semantic
distance to compute signed semantic distance, which gave positive val-
ues to the probability of inferring dark-more assignments and negative
values to the probability of inferring light-more assignments.

Computing signed semantic distance required specifying merit based
on direct associations between each endpoint color and each endpoint
concept (“no sunshine” vs. “a lot of sunshine”), as in Fig. 1. From Exp.
1, we had association data for domain concept “sunshine,” but not the
endpoint concepts. Thus, we collected data from additional participants
(n = 31), who rated the association strength between each endpoint
color and endpoint concepts “no sunshine” and “a lot of sunshine” (see
Supplementary Material Section S.5). We used the mean ratings as
merit to compute signed semantic distance.

As shown in Fig. 8B, inferred mappings were predicted by simula-
tions of assignment inference: signed semantic distance was strongly
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Fig. 8: Mean proportion of times the darker side was selected for each
color scale, plotted as a function of (A) signed association difference,
and (B) signed semantic distance using direct associations as merit.
Mark colors indicate endpoint colors. Error bars indicate standard error.

correlated with the proportion of times participants chose the darker side
(r(12) = .97, p < .001). This correlation was stronger than the correla-
tion for signed association difference reported above (z= 1.96, p= .05).
The trail of points that plateaued in Fig. 8A now compress onto signed
semantic distance values near −1 in Fig. 8B.

From this strong linear relation, one may suppose that only merit
from direct associations is needed to simulate inferred mappings for
colormap visualizations. But, Exp. 2 only included conditions in which
direct associations and the dark-is-more bias conflicted, and Exp. 1 sug-
gested that when they were consistent, the dark-is-more bias dominated
regardless of association strength difference. To understand the relative
contribution of these two potential sources of merit in assignment infer-
ence, it is necessary to model data sampled from multiple points along
the full range of signed semantic distance (see Exp. 3).

Summary. As in Exp. 1, Exp. 2 showed that direct associations
override the dark-is-more bias when the association difference between
the light and dark colors was sufficiently large. The pattern of inferred
mappings was strongly predicted by simulations of assignment infer-
ence using merit from direct associations (signed semantic distance).

6 EXPERIMENT 3
In Exp. 3, we developed and tested a new method to combine multi-
ple (sometimes conflicting) sources of merit to simulate assignment
inference (Fig. 1). The experimental task was the same as Exps. 1-
2, but we tested three new domain concepts (ocean water, wild fire,
and glacial ice), and sampled 21 points along the full range of direct
association-based signed semantic distance for each concept. Our goals
were: (1) determine the optimal weighting on direct associations (WA)
relative to the dark-is-more bias (WD) when computing combined merit,
and (2) test whether simulations of assignment inference using the
optimal combined merit predicted people’s inferred mappings better
than simulations using each source of merit alone.

6.1 Methods
We first collected direct association ratings for the domain concepts
and then used the mean ratings to generate colormaps to assess inferred
mappings. We also collected additional data to quantify merit for direct
associations and the dark-is-more bias.

6.1.1 Measuring direct color-concept associations

We collected direct association ratings for five domain concepts relevant
to environmental data: wild fire, ocean water, glacial ice, ground soil,
and tree foliage (inspired by [34]), using the same methods as in Exp.
1. The data are shown in Supplementary Material Fig. S.7.

The target sample was n = 35 to match Exp. 1, and we collected data
in batches until reaching this target after excluding those with atypical
color vision (n = 15) and who failed the attention check (n = 17);
70 Amazon mTurk workers total. We shortened the attention check
block but used the same a priori exclusion criterion (see Supplementary
Material Section S.3). Our final sample was n = 38 (mean age = 42.8

Wild
fire

Glacial
 ice

Ocean
 water

Darker more associated
 with domain concept

Lighter more associated
 with domain concept

Conflicting Consistent

Fig. 9: Color scales used to create colormaps in Exp. 3. Rightward
of center, the domain concept increases in direct association strength
with the darker endpoint (consistent direct and relational associations).
Leftward of center, the domain concept becomes increasingly more
associated with lighter (conflicting direct and relational associations).

years old, 18 women, 20 men). The experiment took approximately 60
min. and participants were compensated $7.25.

6.1.2 Generating colormaps and computing merit

Based on the direct association data, we created colormaps for three
concepts: wild fire, ocean water, and glacial ice. These domain concepts
enabled spanning the full range of signed semantic distances within
each concept. We generated colormaps using the methods in Exp. 1
(Fig. 5) and Supplementary Material Section S.4. For each domain
concept, we chose 21 pairs of endpoint colors that spanned the full
range of association differences from strongly negative (light color was
more associated with the domain concept) to strongly positive (dark
color was more associated with the domain concept). Fig. 9 shows
the resulting 21 color scales for each domain concept. All color scales
satisfied the criterion for monotonicity. As in Exps. 1 and 2, each color
scale was applied to 10 underlying datasets to produce 10 colormaps
per color scale, with darker side left/right balanced (Fig. S.8).

After selecting the color pairs, we collected additional data to esti-
mate merit for each endpoint color paired with each endpoint concept,
with respect to direct associations and the dark-is-more bias (Fig. 1).

Merit for direct associations. A new set of 30 participants rated the
association strength between each endpoint of each domain concept
(e.g., “a lot of ocean water,” “no ocean water”) and each corresponding
endpoint color (details in Supplementary Material Section S.5 ). As
in Exp. 2, we used these associations to estimate merit derived from
direct associations for each color-concept endpoint pairing (Fig. 1).

Merit for the dark-is-more bias. So far, we have discussed the dark-
is-more bias as binary—dark-more assignments have greater merit than
light-more assignments. However, the dark-is-more bias can also be
considered continuous—the degree to which dark-more assignments
have greater merit depends on the degree to which one endpoint appears
clearly darker than the other endpoint. One might consider quantifying
merit of the dark-is-more bias using lightness (L*) difference between
the two endpoint colors of the color scale that varied monotonically in
lightness. However, we reasoned that the dark-is-more bias would be
activated if one side appeared clearly darker than the other, and adding
additional lightness difference may not increase activation of the bias.

Thus, we used an empirical approach to quantify merit for the dark-
is-more bias. For each endpoint color pair, volunteers with expertise in
color perception (n = 4) rated the degree to which one color was clearly
darker than the other color (referred to as darkness difference ratings).
They judged each pair twice (left/right balanced), and made their ratings
on continuous slider scale from “left color is clearly darker” to “right
color is clearly darker.” The middle was labeled “equal darkness” (see
Supplementary Material Section S.5 for details). For each color scale,
we coded dark-more edges to have merit = 1 and light-more edges
to have merit = 0, and then multiplied these values by the darkness
difference ratings. As a result, differences in total merit of dark-more
vs. light-more assignments scaled with the degree to which it was
obvious that the dark endpoint appeared darker than the light endpoint.



6.1.3 Colormap interpretation task
This task was the same as in Exps. 1 and 2, except the domain concepts
were wild fire, ocean water, and glacial ice and there were 21 color
scales per domain concept (3 domain concepts × 21 color scales =
63 groups of participants). Participant judged 10 colormaps for their
assigned domain concept and color scale. They were told that the col-
ormaps represented data about [domain concept] in different counties.
Their task was to indicate whether there was more [domain concept]
on the left/right side of the county (Fig. 1).

The target sample size was n = 1260 (n = 20 per condition) based
on a power analysis (see Supplementary Material Section S.6). We
collected data in batches until each condition had at least n = 20 after
excluding those with atypical color vision as assessed in Exp. 2 (1391
Amazon mTurk workers total, 107 excluded). The final sample was
n = 1284 (mean age = 40.3 years old, 1 no reported age; 672 women,
598 men, 9 non-binary, 5 no reported gender). The groups ranged
from 20−22 participants due to how the experiment code automated
assignments to conditions while managing exclusions. The experiment
took approximately 5 min. and participants were compensated $0.60.

6.2 Results and Discussion
In the following analyses, we determined the optimal relative weighting
on direct and relational associations, and then assessed whether as-
signment inference simulations using the optimal weighting predicted
inferred mappings better than simulations using each source of merit
alone. We split participants into a training set to determine the optimal
weighting, and a test set to compare the optimal weighting with each
source of merit alone. Each set had 10−12 participants per color scale
for each domain concept. We simulated assignment inference with
varying relative weight on each source of merit as follows:

(1) Computing combined merit. First, we specified merit of each
color-concept pairing within each source of merit (Section 6.1.2). Then,
we calculated combined merit by computing the weighted sum over
bipartite graphs for each source of merit (Fig. 1). We used each combi-
nation of weights on direct associations (WA) and the dark-is-more bias
(WD) in increments of .05, such that their sum was 1. Each weight was
a multiplicative factor on each edge of the respective bipartite graphs.
For instance, a weight pairing of (1,0) placed all the weight on direct
associations, (0,1) placed all the weight on the dark-is-more bias, and
(.5, .5) placed equal weight on both sources of merit.

(2) Computing signed semantic distance. We computed signed se-
mantic distance over combined merit for each weight pairing, following
the procedure in Exp. 2. First, we computed semantic distance between
the endpoint colors for each domain concept. Next, we determined
the optimal assignment (which assignment had greater overall merit),
coded as +1 for dark-more and −1 for light-more. Last, we multiplied
this coding by semantic distance to obtain signed semantic distance.

To determine the optimal weighting, we used mean squared error
(MSE) to compare assignment inference simulations with human judg-
ments. For each of the 21 color scales for each of the three domain
concepts, we computed MSE between signed semantic distance and the
mean probability that participants in the training set chose the darker
side of the colormaps. When computing MSE, we scaled the proportion
chosen data to range from -1 to 1, corresponding with the scale of
signed semantic distance. Fig. 10A shows MSEs averaged over the 21
color scales for each domain concept, plotted as a function of weight
pairs, along with the average over domain concepts. On average, the
best performing weight pair yielding the lowest MSE had a weight of
WA = .7 on direct associations and WD = .3 on the dark-is-more bias.

Using data from the held out testing set, we evaluated whether this
optimal weight pair was better for predicting assignment inference
than each source of merit alone. For each color scale for each domain
concept, we computed MSE between mean responses (scaled to range
from −1 to 1) and signed semantic distance with the optimal weight-
ing identified from the training set (.7, .3), with all weight on direct
associations (1,0), and with all weight on the dark-is-more bias (0,1)
(Fig. 10B). To test effects of relative weighting, we used a linear mixed
effects model predicting MSE for each color scale, with fixed effects
for relative weighting, domain concept, and their interaction (using

A. Training set

.750 .25 .5 1

Fire

Ice
Avg.Be

st 
pa

ir

M
ea

n 
sq

ua
re

d 
er

ro
r

0

.6

1

.8

.2

.4

Wat.

Be
st 

pa
ir

B. Testing set

.750 .25 .5 1
* **

Relative weighting applied to each source of merit  

��

��
.251 .75 .5 0 .251 .75 .5 0

Fig. 10: Mean squared error (MSE) predicting inferred mappings from
assignment simulations with varying weights on dark-is-more bias (WD)
and direct associations (WA) for the (A) training set and (B) testing
set. MSEs are shown separately for colormaps representing ocean
water (blue diamonds), glacial ice (gray squares), and wildfire (yellow
triangles), plus the average of all three concepts (black circles). Error
bars represent standard error of the means. The gray bar indicates the
best pair, determined from the training set.

Helmert contrasts). The model also included a by-color scale random
intercept and random slope for relative weighting. Here we focus on
the main effect of relative weighting (F(2,53.45) = 9.18, p < .001),
and we report on further details of this model in Supplementary Ma-
terial Section S.7. Planned independent samples t-tests indicated that
the optimal weight pair fit inferred mappings better than direct as-
sociations alone (t(124) = −2.55, p = .01) and dark-is-more alone
(t(124) =−3.53, p = .001).

Fig. 11 shows the relation between participant responses and sim-
ulations of assignment inference using the optimal weight pairings
for each color scale. Points would fall along the diagonal line if the
simulations perfectly predicted inferred mappings. Signed seman-
tic distance was significantly correlated with inferred mappings for
all three domain concepts, but to varying degrees: strong correlation
for wild fire (r = .83, p < .001), moderately strong for ocean water
(r = .72, p < .001), and moderate for glacial ice (r = .55, p = .01). Pre-
liminary exploration suggests this weaker relation for glacial ice might
be due to some colormaps appearing to vary in opacity, activating the
opaque-is-more bias. The opaque-is-more bias aligns with the dark-is-
more bias on light backgrounds (as used here), and the two relational
associations may have combined to jointly override effects of direct
associations. Our study was not designed to test the opaque-is-more
bias, so future work is needed to study these effects more directly.6
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Fig. 11: Mean proportion of times the darker side was selected for the
held-out testing set for each color scale as a function signed semantic
distance using the optimal weight pair. Mark colors indicate color scale
endpoint colors, and error bars indicate standard error.

Supplementary Material Section S.7 includes an additional analysis
showing independent effects of direct and relational associations on

6This weaker correlation for glacial ice is not likely due to concept glacial
ice, but rather the colormaps appearing to vary in opacity happened to be in the
glacial ice condition. The applicability of the opaque-is-more bias depends on
the combination of background and colors of the color scale [35], and would be
applicable for these colormaps if they represented any other domain concept.



inferred mappings (as in Exp. 1). It also includes plots of inferred
mappings as a function of association difference and semantic distance
from direct associations (Fig. S.9), analogous to Fig. 8 in Exp. 2. The
strong plateau for sunshine colormaps in Exp. 2 was less apparent in
Exp. 3, and we consider possible explanations in Section S.7.2.

Summary. Exp. 3 showed that inferred mappings for colormaps
were well-predicted using a simulation of assignment inference with
combined merit. The optimal combined weighting resulted in predic-
tions with less error than predictions simulated with weight on direct
associations or the dark-is-more bias alone.

7 GENERAL DISCUSSION

A central problem in visual communication is understanding how peo-
ple infer meaning from visual features. By anticipating people’s expec-
tations about how visual features should map onto concepts, designers
can create visualizations that align with those expectations, thereby
facilitating communication [14, 18, 22, 26, 35, 36, 38, 43, 50, 51].

We approached this problem by bridging work on inferred map-
pings for visualizations of categorical information [18, 22, 36, 38, 41]
and visualizations of continuous data [8, 21, 35, 43] to understand both
within a single framework of assignment inference. Doing so required
broadening the notion of merit in assignment inference to include not
only direct associations as in [22,36,38], but also relational associations
(e.g., dark-is-more bias). Exp. 1 showed that direct and relational asso-
ciations contribute independently to inferred mappings for colormaps.
Exp. 2 showed that inferred mappings for colormaps were predicted
by simulations of assignment inference (signed semantic distance) us-
ing merit from direct associations. Exp. 3 showed that simulating
assignment inference using a weighted sum over merit from direct and
relational associations was better at predicting inferred mappings than
simulations using each source of merit alone.

This study is an initial step towards comprehensively modeling the
effects of multiple sources of merit in assignment inference. Here, we
began with direct associations and one type of relational association,
the dark-is-more bias. In future work, we will extend our approach to
include additional sources of merit, including the opaque-is-more bias
and hotspot-is-more bias. To quantify merit for the opaque-is-more
bias, it will be necessary to estimate the degree to which colors in the
colormap appear to vary in opacity depending on the background color
(see [35]), and ensure that this source of merit falls out of the equation
when colormaps do not appear to vary in opacity. To quantify merit for
the hotspot-is-more bias, it will be necessary to quantify the degree to
which hotspots are salient in the colormap, and again ensure that this
source of merit falls out of the equation when colormaps do not appear
to have hotspots. Our approach for estimating inferred mappings not
only has potential to accommodate known sources of merit, but can
also scale as additional sources of merit are discovered.

We also expect our approach to extend to abstract concepts. Ev-
idence suggests that sets of abstract concepts previously considered
“non-colorable” (e.g., sleeping, driving, safety, comfort) can be mean-
ingfully encoded using color as long as their association distributions
are sufficiently different from one another (semantic discriminability
theory [22]). In the present framework, as long as the colors in the color
scale vary in association strength with the domain concept, then merit
from direct associations will influence combined merit with the dark-is-
more bias. If the associations do not vary in association strength (low
semantic distance), then merit from direct associations will have little
effect on combined merit, and the dark-is-more bias should dominate
inferred mappings. These patterns should hold regardless of whether
the concepts are abstract/concrete. If a concept has no systematic color-
concept associations, regardless of whether it is abstract/concrete, then
it will not be possible to create a color scale with large direct association
difference, so the dark-is-more bias (and any other sources of merit)
would dominate inferred mappings.

Overall, our findings can be translated to incorporate color seman-
tics into tools that generate colors for information visualizations (e.g.,
Colorgorical [12], Color Crafter [45], and CCC-Tool [25]). These tools
already allow designers to balance different factors, such as perceptual
discriminability and aesthetics. With a comprehensive model of assign-

ment inference combining multiple sources of merit, it will be possible
to incorporate semantic discriminability into algorithms that optimize
color selection for visualization design.

Limitations. This study has limitations for future work to address.
Linearly interpolated color scales. We used color scales that were

linearly interpolated between two endpoints in CIELAB space, which
supported the goals of this study. Interpolated color scales allowed
us to compare merit of dark-more vs. light-more assignments using
direct color-concept associations from only the endpoint colors. Using
only the endpoints was possible because the intermediate colors varied
approximately monotonically in association strength between the end-
point colors (see Supplementary Material Section S.4). Monotonicity
would be violated if the domain concept was more/less associated with
intermediate colors of a color scale than the endpoints (e.g., using a
color scale for sunshine that interpolated between a red and yellowish-
green, resulting in more strongly associated yellows in the middle).

Monotonicity would also likely be violated in industry standard
color scales that spiral through color space [5, 16, 45]. Yet, Smart et
al. [45] showed that such color scales that spiral produce colormaps
that are more interpretable and aesthetically preferable than linear
colormaps like the ones in the present study. Indeed, many criteria
determine whether color scales (also referred to as ramps) are effective
for visualizing continuous data [6, 25, 32, 34, 44, 45, 53] and our color
scales were not designed to meet those criteria. Thus, the color scales
in the present study are not meant to be used for visualizations of real
data. To apply our modeling approach to more complex color scales, it
will be necessary to quantify merit for color-concept pairings sampled
in multiple steps between the two endpoints, and use a method for
computing the optimal assignment that accounts for many colors and
many concepts.

Sequential color scales. The present work, and most previous work
on inferred mapping for colormaps [21, 35, 43], has focused on se-
quential color scales, where encoded data ranged from small to large.
Questions remain concerning how this work extends to diverging scales,
where encoded data has a neutral point. The dark-is-more and opaque-
is-more biases imply that more extreme data (furthest from the neutral
point) should map to darker, more opaque regions, respectively. Future
work is needed to test these hypotheses, and to investigate people’s
expectations about which colors represent data values above/below
the neutral point. Future work is also needed to determine whether
the relative weightings on sources of merit established in Exp. 3 for
sequential color scales generalize to diverging color scales.

Task type. Our study and much of the previous studies on inferred
mappings for colormaps [21, 35, 43] used tasks that asked participants
to interpret where “more” was represented in a colormap. However,
people use colormap data visualizations for a wide variety of other tasks,
such as those studied by Padilla et al. [28]: finding a specific value
of a concept, comparing values across regions, and averaging values
across regions. Future research is needed to test whether the present
framework modeling combined merit to estimate inferred mappings
predicts performance in these other kinds of tasks.

Conclusion. This work builds a new bridge for understanding how
direct and relational associations combine to influence inferences about
the meanings of colors in visualizations. We have laid the groundwork
to develop a more comprehensive model of assignment inference that
accounts for additional sources of merit that we know of, and can
scale to accommodate new sources of merit as they are discovered.
Our findings can be translated directly to design visualizations that
align with people’s expectations about the meanings of colors, thereby
making visualizations that are easy to interpret.
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S SUPPLEMENTARY MATERIAL

S.1 Underlying data distribution for generating colormaps
The following description of the process for generating the colormaps,
including Fig. S.1, is reproduced directly from pp. 813-814 in [35]:

The data used to generate the colormaps were sampled from
an arctangent curve with added normally-sampled noise (Fig.
S.1). To generate the data for each row of the colormap, we
discretized the arc tangent curve into eight bins,corresponding
to the eight columns in the colormap display. We centered
the arctangent curve between the fourth and fifth bins, such
that half of the display was biased to have larger values than
the other half. We then perturbed each arctangent value by
sampling from a normal distribution with the mean equal to
the arctangent value and the standard deviation equal to 0.25.
When the values fell outside the [0,1] interval, we re-sampled
until they were all within the correct range. For half of the
datasets, the arctangent curve was oriented as shown in Fig.
S.1, and for the other half, it was left/right reversed. This
enabled a left/right balance of the darker region (i.e., half of
the colormaps contained the darker region on the left and the
other half contained the darker region on the right).
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Fig. S.1: Distribution used to sample values at each time point to gener-
ate the data used to construct the colormap images. Figure reproduced
from Figure 4 in Schloss et al. [35].

S.2 Calculating semantic distance
We calculated semantic distance as specified in [22, 36]. The following
definition is reproduced directly from p. 700 in [22]:

Semantic distance is a way to operationalize semantic dis-
criminability in the case where there are n = 2 features and
concepts [36]. Fig. S.2 illustrates an example in which we
have concepts {M,W} and colors {1,2}. The color-concept
associations between all possible pairs are x1, . . . ,x4, as shown
in Fig. S.2. We assume each xk is normally distributed with
mean x̄k equal to the corresponding ai j and standard deviation
σk = 1.4 · x̄k(1− x̄k), which was found to be a good fit to ex-
perimental data [36]. The outcome of the assignment problem
is determined by the quantity ∆x := x1 − x2 + x3 − x4. The
optimal assignment is: (M-1 and W-2 if ∆x > 0) and (M-2 and
W-1 if ∆x < 0).

Semantic distance is defined by the equation

∆S =
∣∣Prob(∆x > 0)−Prob(∆x < 0)

∣∣. (1)

Since the xk are assumed to be normally distributed, so is ∆x,
and the probabilities in (1) can be computed analytically:

Prob(∆x > 0) = Φ

(
(x1 + x4)− (x2 + x3)√

σ2
1 +σ2

2 +σ2
3 +σ2

4

)
, (2)

and Prob(∆x < 0) = 1−Prob(∆x > 0), where Φ(·) is the cu-
mulative distribution function (cdf) of the standard normal
distribution. When ∆S is close to 0, ∆x has a similar probabil-
ity of being positive or negative, so the assignment is fragile.
When ∆S is close to 1, ∆x is almost always positive or almost
always negative, so the assignment is robust. This notion
of semantic distance can be used even when the features are
not colors, by replacing the color-concept associations with
feature-concept associations, and adjusting the formula for σk
as appropriate.
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Fig. S.2: Diagram showing how association ratings between concepts
{M,W} and colors {1,2} produce a distribution for ∆x. Semantic
distance is the absolute difference of the area under the curve to the left
and right of zero. Figure reproduced from Figure 3 in Mukherjee et
al. [22], which was adapted from Figure 4 in Schloss et al. [36].

S.3 Attention check in color-concept association task

At the end of color-concept association tasks in Exps. 1 and 3, we
included an additional block of trials to serve as an attention check.
The goal was to collect color-concept association data for a concept
for which participants should have strong, specific associations if they
were making careful ratings during this task. We chose the concept
celery, because we knew from previous data [22] that participants (on
average) had strong specific color-concept associations for celary (Fig.
S.3). That is, shades of greens were strongly associated with celery,
and shades of reds and purples were weakly associated with celery.
Using data from [22], we identified the six strongest and six weakest
associated colors with celery (See Fig. S.3). We then defined an a
priori exclusion criterion that the participants of the present study must
have an association rating greater than .5 (on a scale from 0 to 1) for at
least 5 out of 6 strongest celery colors, and an association rating less
than .5 for at least 5 out of 6 weakest celery colors. We chose to put
the attention check as the last block to evaluate performance at the end
of the task when participants were most fatigued.
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Fig. S.3: Mean association ratings for celery from Mukherjee et al. [22].
The six strongest and six weakest colors were used as the basis for
attention check exclusion criteria in Experiments 1 and 3 of the present
work. In Exp. 3, only these twelve colors and the twelve moderate
colors were shown during the association ratings task attention check.



In Exp. 1, participants rated the association between each of the UW-
71 colors and the concept celery. In Exp. 3 we reduced the length of the
attention check by having participants rate a subset of colors, rather than
all 71 colors. We included the six colors most-associated celery colors,
the six least-associated colors, and 12 moderately associated colors that
straddled the middle of the ratings scale (around .5), determined from
data in [22] shown in Fig. S.3.

S.4 Selecting endpoint colors to create color scales
In all three experiments, we used the same general process for selecting
pairs of colors to serve as endpoints for creating color scales (Figs. S.4
and S.7). Below, we explain this approach in detail for Exp. 1, and
explain any changes to this approach for Exps. 2 and 3.

Experiment 1. To generate the color scales, we needed pairs of
endpoint colors that varied in lightness and varied in their direct associ-
ations with shade and sunshine. We began with the mean color-concept
association data (Fig. S.4). From the 71 individual colors, there were
2485 possible pairs. To ensure there was obvious lightness variation
to activate the dark-is-more bias, we reduced this number of pairs by
excluding pairs of the same lightness (637 pairs) or pairs that had a
small lightness difference (difference of L* < 38 in CIELAB space)
(812 pairs). It is not yet known how much lightness difference is needed
to activate the dark-is-more bias, but this should provide a conserva-
tive amount given prior work on color discriminability along the L*
axis [47, 48]. We also removed pairs that included white or black (96
pairs) to reduce the possibility that the opaque-is-more bias would be
activated [35] . After this exclusion, we limited the set by only working
with pairs that had a lightness difference of either 38 or 50 (143 pairs
excluded).
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Fig. S.4: Mean direct association ratings for (A) sunshine and (B) shade
with each of the UW-71 colors (fill of bar). Colors are sorted from high
to low association strength.

For the remaining color pairs, we linearly interpolated between the
light and dark colors in CIELAB space to create a color scale with 10
total steps (Fig. 5). Ideally, association strengths between the domain
concepts and the interpolated colors would fall between association
strengths for endpoint colors. To estimate the direct associations for
intermediate colors, we used a color space regression model as in
Schloss et al. [37]. Color space regression models predict a dependent
measure (e.g., color preferences in [37]) from coordinates of each color
in a well-specified color space. Schloss et al. [37] tested several kinds
of color space models and found that a cylindrical model in CIELCh
space with two harmonics best predicted color preference data, so we
use that model here. The model includes seven predictors for each
color: lightness (L*), chroma (C*), first harmonic of hue angle (sin(h)
and cos(h)), second harmonic of hue angle (sin(2h) and cos(2h)), and
an additive constant. We note that CIELCh space is a cylindrical
representation of the coordinates in CIELAB space. Lightness (L*)
coordinates are the same in both spaces, whereas a* and b* in CIELAB
(roughly) represent red/green and blue/yellow Cartesian axes, C* and h
in CIELCh represent radius and angle.
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Fig. S.5: Predicted association ratings (circles filled according to color
scale) for colors within two color scales representing amounts of sun-
shine. In (A) the predicted associations are approximately monotonic,
whereas in (B), the predicted associations are non-monotonic). Color
scales ordered with more associated endpoint on the left and less asso-
ciated endpoint on the right.

We used the following procedure to predict associations for colors
for which we did not have direct association ratings. First, for each
concept, we conducted a multiple linear regression model to estimate
the mean direct association ratings for the colors we did have (UW-71).
This analysis provided weights for the seven predictors and the additive
constant for each concept. We checked that the models fit the data well,
and found strong fits for both sunshine (multiple R = .81) and shade
(multiple R = .88). Second, we used these weights and constant to
define the regression equation for each concept. Finally, we plugged
the CIE L*, C*, and h coordinates for the new, interpolated colors
into the regression equation for each concept to estimate the direct
color-concept associations.

Once we had the estimated direct associations for interpolated col-
ors between the endpoints of each color scale, we used another linear
regression analysis to estimate monotonicity. For each color scale (two
endpoints plus eight intermediate colors), we fit a regression line esti-
mating predicted direct association ratings from color sequence (1-10)
in the color scale (Fig. S.5). If model estimates for interpolated col-
ors were not intermediate between associations strengths for endpoint
colors (non-monotonic), there should be a poor fit (low R2). We set
the exclusion criterion for color scales to be to be R2 < .8. We note
that this estimate of monotonicity is a heuristic, and it is possible for
model estimates to vary monotonically while being poorly fit by a
regression line. Thus, our criterion may have been overly conservative
in excluding candidate color scales.

A total of 429 pairs of endpoint color pairs were excluded for not
passing this criterion. Fig. S.5A shows an example color scale that
meets this criterion of approximate monotonicity for the concept sun-
shine. The estimated associations for the interpolated colors fall be-
tween the associations expected for the endpoints colors, meaning the
lightest color is predicted to be most associated with sunshine, and the
darkest color is predicted as the least associated. The drop-off that hap-
pens for the last point (darkest gray) could be due to chroma equaling
zero, and consequently dropping out of the equation. This drop-off for
an achromatic endpoint emerges for other color scales (see Fig. S.6A).
Fig. S.5B shows a color scale that is estimated to be non-monotonic
for sunshine. Here, some interpolated colors are expected to be more
associated with sunshine than either endpoint color of the scale.

When we originally performed this linear regression analysis to esti-
mate monotonicity, there was an error in the code, in which hue angle
was treated as radians, rather than degrees. This resulted in slightly dif-
ferent estimated associations and fits. Once corrected, two color scales
for shade did not meet our statistical criterion of a fit of R2 > .8 in
Exp. 1. Our statistical criterion is just a heuristic, and visual inspection
suggested that the intermediate colors still vary monotonically such
that the interpolated colors were not more or less associated than the
endpoints, so we kept them in the analyses (see Fig. S.6A).

We selected our final eight color scales (Fig. 5) by identifying four
high association difference color scales and four low association dif-
ference color scales. The high association difference color scales were
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Fig. S.6: Predicted association ratings (circles filled according to color
scale) for colors within color scales that did not pass the monotonicity
heuristic criterion. (A) Predicted associations for shade (Exp. 1) do
still appear to vary monotonically in association strength. (B) Predicted
associations for sunshine (Exp. 2) vary such that intermediate colors
are more strongly associated than the endpoints. Color scales ordered
with more associated endpoint on the left and less associated endpoint
on the right.

those that had the largest association difference for both sunshine and
shade. The low association difference color scales had association
differences near zero for both concepts. When making this final selec-
tion, we chose color scales that appeared different from one another to
provide variability in our stimulus set.

We applied each color scale to 10 underlying datasets to create a set
of 80 colormaps. Half the datasets featured the darker color on the left
side (as in Fig. S.8 top) and the other half featured the darker color on
the right side (as in Fig. S.8 bottom).

Experiment 2. We used the same approach as in Exp. 1, with
two exceptions. First, the only domain concept in this experiment was
sunshine, so we only checked monotonicity for sunshine, and not shade.

After exclusions, we examined the association differences between
the endpoint colors for the remaining color scales and selected 8 new
color scales that spanned the full range of association differences be-
tween the high and low color scales used in Exp. 1. We also checked
that colormaps generated using these colors scales appeared differ-
ent from each other. To create the colormaps for this experiment, we
applied these new color scales to the same 10 underlying datasets.

After collecting the data for Exp. 2, we discovered that two of the
color scales in this experiment did not meet our statistical criterion for
monotonicity due to the same coding error treating hue angle as radians
instead of degrees as described for Exp. 1. Visual inspection showed
that these color scales strongly deviated from the best fit line, and in
one case the intermediate colors were more associated with sunshine
than the endpoints (Fig. S.6B). Thus, we excluded data from these two
color scales from our analyses in Exp. 2.

Experiment 3. We used the same approach as in Exp. 1, with the
following exceptions. When selecting color pairs to generate the color
scales, we allowed black and white to be included to provide more
possible color pairs to choose from. Fig S.7 shows the mean direct
association ratings for each of the environmental concepts. Unique to
this experiment, we investigated the full range of signed association
difference within each domain concept. This full range of signed as-
sociation difference corresponded to a full range of signed semantic

distance (when non-zero weight was placed on merit for direct asso-
ciations). To select color scales spanning this range, we grouped all
remaining color scales into three even-sized bins based on their signed
association difference. We selected seven color pairs from each bin, for
twenty-one color scales per domain concept that varied along the range
of association differences, such that for half the color scales, the direct
associations and dark-is-more bias were consistent (Fig. 9; right color
scales) and for half, the direct associations and dark-is-more bias were
conflicting (Fig. 9; left color scales).

During this process, we narrowed our set of concepts to glacial ice,
ocean water, and wild fire given there were color pairs for these concepts
that spanned nearly the full range of signed association differences,
whereas the color pairs for tree foliage and ground soil were more
limited. We the checked that the color space regression model strongly
fit our chosen domain concepts (multiple R = .94 for wild fire, multiple
R = .90 for ocean water, and multiple R = .90 for glacial ice). We
also ensured that interpolations between each pair of selected end point
colors passed the monotonicity criterion.
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Fig. S.7: Mean association ratings for (A) wild fire, (B) glacial ice,
(C) ocean water, (D) tree foliage, and (E) ground soil with each of
the UW-71 colors (fill of bar). Colors are sorted from high to low
association strength.

S.5 Additional data for estimating merit

For each domain concept used in the colormap tasks, we collected direct
association ratings for the endpoint quantities of each domain concept
(“no [domain concept]” and “a lot of [domain concept]”), which was
displayed at the top of the screen. We used the means of these ratings
to specify merit for direct associations. For Exp. 3, we also collected
darkness difference ratings which we used to specify merit for the
dark-is-more bias.



Fig. S.8: Colormap data visualizations generated using the 10 underlying datasets in study. In the top row, the darker side is on the left, and in the
bottom row, the darker side is on the right. The examples in this figure were created using one of the color scales from Exp. 1. Different color
scales were applied to these same 10 underlying datasets to create all the colormap stimuli for this study.

Sunshine endpoint associations. This task was the same as the
direct associations task described in Section 4.1.1, with the following
exceptions. Instead of rating associations for all UW-71 colors with
the domain concept name (e.g., sunshine), participants only rated their
associations for each endpoint color in the color scales and each end-
point quantity of the domain concept (e.g., “no sunshine” and “a lot of
sunshine”). Participants judged each of the endpoint colors from the
color scales in Exp. 2, which included endpoint colors from Exp. 1 as
well.

Before beginning the task, participants were shown the two endpoint
concepts and the set of endpoint colors, presented as individual squares.
To anchor the endpoints of the response scale, they were prompted
to think about which color they associated most and least for each
endpoint concept (“no sunshine” and “a lot of sunshine”).

After completing the block for sunshine, participants completed the
attention check as used in Exp. 3. For each endpoint concept, we
transformed the ratings from a scale of -200 to 200, to a scale of 0 to 1.
We then averaged the mean across all participants.

The target sample size was n = 30 as in Exp. 1. We collected 30
participants initially, determined how many participants were excluded,
and iteratively posted the experiment to collect data for the number of
participants excluded until reaching at least 30 participants. Exclusions
were based on atypical color vision (as assessed in Exp. 2) and the
attention check (as used in Exp. 3) (48 Amazon mTurk workers in total,
17 excluded for atypical color vision, 0 for failing the attention check).
Our final sample included 31 participants (mean age = 39 years old;
20 women, 11 men). The experiment took approximately 10 min. and
participants were compensated with $1.21.

Shade endpoint associations. We also collected endpoint associa-
tions for shade, but they were not used in any of analyses in this paper.
This task was the same as the endpoint association ratings task for
sunshine, except “sunshine” was replaced with “shade”, and it only
included the endpoint colors from Exp. 1.

The target sample size was n = 30. We collected 30 participants ini-
tially, determined how many participants were excluded, and iteratively
posted the experiment to collect data for the number of participants
excluded until reaching at least 30 participants. Exclusions were based
on atypical color vision and the attention check (56 Amazon mTurk
workers in total, 10 excluded for atypical color vision, 16 for failing the
attention check). Our final sample size was 30 participants (mean age
= 39 years old; 10 women, 20 men). The average time to complete the
experiment was approximately 5 min. Participants were compensated
with $0.60.

Environment concept endpoints. We collected endpoint direct
association ratings for the three domain concepts selected for Exp.
3: wild fire, glacial ice, and ocean water. Domain concepts varied

within-subject, presented in a blocked randomized design, such that
participants rated their associations for the two endpoint concepts for a
given domain concept, prior to moving on to the next domain concept.
The two endpoint concepts were presented in a random order within
each domain concept. At the start of each block, participants were
shown the endpoint concept names and the set of endpoint colors they
would be judging in that block to anchor the endpoints of the response
scale.

The target sample size was n = 30. We collected 30 participants ini-
tially, determined how many participants were excluded, and iteratively
posted the experiment to collect data for the number of participants
excluded until reaching at least 30 participants. Exclusions were based
on atypical color vision and the attention check (37 undergraduate
psychology students in total, 5 excluded for atypical color vision, 5 for
failing the attention check). Our final sample size was 30 participants
(mean age = 19 years old; 25 women, 4 men, 1 non-binary). The ex-
periment took approximately 30 min. and participants received course
credit.

Darkness difference ratings As described in the Section 6.1.2) of
the main text, we collected darkness difference ratings to quantify the
degree to which one endpoint color was clearly darker than the other
endpoint color within each color scale. The means of these ratings were
used to quantify merit for the dark-is-more bias (see Section 6.1.2).

We collected data from four volunteers with expertise in color per-
ception. During the task, participants saw two colored squares above
the sliding scale with the endpoints of the scale labeled “left color is
clearly darker” and “right color is clearly darker”. The middle point
of the scale was labeled “equal darkness.” Participants used the slider
scale to indicate which color in the pair they thought was darker, and
the degree to which they thought that color was darker. Participants
rated each of the color pairs twice, once with the darker color on the
left and once with the darker color on the right.

At the beginning of the experiment, participants were shown an
achromatic color gradient (5 steps from black to white) and were in-
structed how to interpret darkness. To indicate what we meant by dark-
ness, participants were told that the color gradient displayed ranged
from black to white. Colors near the left were darker, with black being
the darkest, and colors near the right were lighter, with white being the
lightest. They were then told that all colors fall somewhere along this
dimension ranging for dark to light and to keep this idea of darkness
in mind during the experiment. We averaged ratings across the two
repetitions for each color pair for each participant, and then averaged
across participants. The experiment took approximately 15 min. and
participants were not compensated.



S.6 Power analyses for colormap tasks

To conduct power analyses for our logistic mixed-effect regression
model, we used the mixed power package in R [17].

Experiment 1. We conducted the power analysis using a logistic
mixed-effects regression model with data from a different study. The
model predicted which side of an achromatic colormap participants
selected as representing more alien animal sightings (left = 1, right =
0) from a factor coding which side was darker (left darker = 1, right
darker = -1). To achieve a power of at least .8, we aimed to recruit 12
participants per condition (total n = 192).

Experiment 2 We conducted the power analysis using data from
participants in Exp. 1 who judged low association difference colormaps
representing sunshine. The analysis was based on a binomial logistic
mixed-effect regression predicting the side selected (left = 1, right =
0) from which side was dark (left darker = 1, right darker = -1), and a
by-subject random intercept. The goal was to have enough participants
per condition to support stable differences from chance, should they
exist, while examining a fuller range of association differences. To
achieve a power of at least .8, recruited 42 participants per condition,
which would also account for expected exclusions for atypical color
vision. Our target sample size was n = 640.

Experiment 3. We conducted a power analysis with the data from
Exp. 2, using a binomial logistic regression in which we predicted
which side was selected (left = 1, right = 0) from which side was dark
(left darker = 1, right darker = -1) and the signed semantic distance
for the pair (ranging from light-more associated: -1 to dark-more
associated: 1). To achieve a power of at least .8, we aimed to recruit
20 participants per condition, which would also support having enough
participants to split the data into a testing set and training set. The
target sample size was n = 1260.

S.7 Additional analyses

S.7.1 Experiment 1

An alternative analysis for evaluating the results from Exp. 1 is to use
the domain concept as a factor, and code the association difference
as positive, regardless of which color is more associated. In doing so,
we can still test for independent effects of direct associations and the
dark-is-more bias.

With these predictors, we used a logistic mixed-effects regression to
predict participant’s response (left vs. right) from the concept (shade vs.
sunshine), the average (unsigned) association difference (centered), and
which side was dark (dark-left vs. dark-right). Here, we include all pair-
wise interactions, and the three way interaction, as well a by-subject
random intercept (Table S.1). Overall, participants chose the darker
side, consistent with the dark-is-more bias. The significant three-way
interaction suggests responses varied depending on the concept and
color pairs used to create the colormap.

Table S.1: Logistic mixed-effects model predicting side chosen from
dark side (dark), association difference (assoc), concept, and all inter-
actions.

Factor βββ SE zzz ppp

Intercept .065 .103 .625 .532
Dark 1.785 .207 8.639 < .001
Assoc .293 .330 .889 .374
Concept −.170 .207 −.823 .410
Dark*Assoc −4.821 .660 −7.303 < .001
Dark*Concept 9.164 .413 22.18 < .001
Assoc*Concept −.201 .660 −.305 .760
Dark*Assoc*Concept 11.67 1.321 8.833 < .001

We ran the model separately for shade and sunshine to better under-
stand this three-way interaction, and consequently the interactions of
dark side × concept and dark side × association difference (Table S.2).
For shade, dark side was the only significant predictor. This indicates

the darker side was more likely to be selected as having more shade,
regardless of direct associations of the colors in the colormap.

For the concept sunshine, on average, participants also selected the
darker side more often. However, there was a significant interaction
of dark side and association difference. This interaction indicates that
for low association difference maps, participants were more likely to
select the darker side as having more sunshine, even though sunshine is
generally associated with lighter colors. However, for high association
difference maps, participants were more likely to select the lighter side
as having more sunshine. This pattern of results aligns with those
discussed in Section 4.2 and indicates that direct color-concept associa-
tions can override the dark-is-more bias, and most closely resembles
the prediction that both the dark-is-more bias and direct associations
influence people’s inferred mappings (Fig. 6A).

Table S.2: Logistic mixed-effects models predicting side chosen from
dark side (dark), association difference (assoc), and their interaction
for each concept.

Concept Factor βββ SE zzz ppp

Shade Intercept −.021 .170 −.121 .904
Dark 6.366 .339 18.772 < .001
Assoc .193 .542 .356 .772
Dark*Assoc 1.012 1.084 .934 .350

Sunshine Intercept .150 .118 1.268 .205
Dark −2.797 .236 −11.86 < .001
Assoc .394 .377 1.05 .296
Dark*Assoc −10.66 .753 −14.15 < .001

S.7.2 Experiment 3

In Exp. 3 we aimed to develop and test a method for combining multiple
sources of merit. Here, we include additional details of the analysis
reported in the main text, and an additional analysis, comparable to
those performed for Exp. 1 and 2, that allow for testing the independent
effects of direct associations and the dark-is-more bias.

As described in Section 6.2 of the main text, we used the data
from the testing set to evaluate whether the optimal weight pair was
better for predicting assignment inference than each source of merit
alone. To examine effects of relative weighting, we used a linear mixed
effects model predicting MSE for each color scale, with fixed effects
for relative weighting, domain concept, and their interaction (using
Helmert contrasts). The model also included a by-color scale random
intercept and random slope for relative weighting.

There was a main effect of relative weighting (F(2,53.45) =
9.18, p < .001), which was due to lower MSE for combined merit than
for the average of each source of merit alone (t(53.55) =−4.24, p <
.001). Performance of each source of merit alone did not signifi-
cantly differ (t(48.32) = −1.14, p = .26). Our model also revealed
a main effect of concept (F(2,60.76) = 12.66, p < .001). Fits were
significantly better for wild fire compared to the average of water
and ice (t(91.75) = −5.01, p < .001), with no significant difference
between ocean water and glacial ice (t(100.08) = .68, p = .50). Con-
cept interacted with relative weighting (F(4,65.63) = 3.13, p = .02),
which was driven by the MSE for fire being especially low for the
optimal weight pairing compared to the average of the other pairings
(t(66.84)= 2.57, p= .01), and being lower for direct associations alone
compared to dark-is-more alone (t(103.15) = 2.87, p = .005).

To test for independent effects of direct associations and the dark-
is-more bias, we also used a binomial logistic regression to predict
the side selected (left vs. right) from a predictor coding which side
was more associated and the degree to which it was more associated
measured by semantic distance using association difference as merit
(ranged from -1 to 1), and a predictor coding which side was darker
and the degree it was darker determined by darkness difference ratings
(scaled to range from -1 to 1), and a by-subject random intercept and
random effects for each fixed factor. Signed association semantic dis-
tance (B = 16.91,SE = 1.35;z = 12.56, p < .001) and darkness ratings
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Fig. S.9: Mean proportion of times the darker side was selected, plotted
as a function of (A) signed association difference, and (B) signed
semantic distance using direct associations as merit, for each domain
concept: wild fire, ocean water, and glacial ice. Each mark represents a
color scale, and the stroke and fill colors represent the endpoint colors
of the color scales. Error bars represent standard errors of the means.

(B = 13.66SE = 1.25;z = 10.91, p < .001) both emerged as significant
predictors, further supporting that both contribute independent effects
on inferred mappings.

Recall that in Exp. 2, once association difference reached about
−.55, participants almost always inferred that the lighter side of the
colormaps mapped to more of the domain concept (sunshine). This
plateau could be explained by semantic distance reaching its limit (Fig.
8). Fig. S.9 shows analogous plots for Exp. 3. It shows the mean
proportion of times participants selected the darker side for colormaps
generated from each color scale for each domain concept, as function
of (A) association difference and (B) signed semantic distance based
on direct associations. The data for these concepts do not appear to
have the plateau around −.55.

We propose that the reason for this difference is that sunshine is
more inherently associated with light colors than the concepts in Exp.
3. That is, the correlation between lightness (CIELAB L*) of the 71
colors and mean association ratings for sunshine was strong (r = .71),
whereas those correlations are weak for wild fire (r = −.03), ocean
water (r = .05), and glacial ice (r = .33). Direct associations may be
less effective at overriding the dark-is-more bias for concepts that are
less inherently light. If so, then it may be necessary to build inherent
lightness into simulations of assignment inference in the future.

We also note that Exp. 3 included fewer color scales in the asso-
ciation difference range −.55 to −1 where the plateau occurred in
Exp. 2. As discussed in the main text, glacial ice has extreme out-
liers in which the dark-is-more bias strongly appears to override direct
associations when they conflict. These outliers may be due to activa-
tion of the opaque-is-more bias, but future work designed to test the
opaque-is-more bias will be necessary to study its effects.



Table S.3: Coordinates for the University of Wisconsin 71 (UW-71) colors in CIE 1931 xyY, CIELAB, and CIELCh space. The white point used
to convert between CIE 1931 xyY and CIELAB space was CIE Illuminant D65 (x = 0.313, y = 0.329, Y = 100). Table adapted from [22].

Color x y Y L* a* b* C* h
1 0.178 0.140 18.42 50 28.89 −73.59 79.06 291.44
2 0.174 0.083 4.42 25 53.86 −72.28 90.14 306.69
3 0.217 0.136 18.42 50 53.86 −72.28 90.14 306.69
4 0.259 0.131 18.42 50 78.82 −70.97 106.07 318.00
5 0.187 0.192 18.42 50 2.62 −49.93 50.00 273.00
6 0.191 0.130 4.42 25 27.58 −48.62 55.90 299.57
7 0.231 0.184 8.42 50 27.58 −48.62 55.90 299.57
8 0.255 0.123 4.42 25 52.55 −47.32 70.71 318.00
9 0.279 0.176 18.42 50 52.55 −47.32 70.71 318.00

10 0.328 0.167 18.42 50 77.51 −46.01 90.14 329.31
11 0.224 0.284 48.28 75 −23.66 −26.27 35.36 228.00
12 0.208 0.214 4.42 25 1.31 −24.97 25.00 273.00
13 0.245 0.254 18.42 50 1.31 −24.97 25.00 273.00
14 0.263 0.274 48.28 75 1.31 −24.97 25.00 273.00
15 0.286 0.199 4.42 25 26.27 −23.66 35.36 318.00
16 0.298 0.241 18.42 50 26.27 −23.66 35.36 318.00
17 0.303 0.262 48.28 75 26.27 −23.66 35.36 318.00
18 0.369 0.181 4.42 25 51.24 −22.35 55.90 336.44
19 0.353 0.226 18.42 50 51.24 −22.35 55.90 336.44
20 0.408 0.211 18.42 50 76.21 −21.04 79.06 344.57
21 0.238 0.357 72.07 88 −49.93 −2.62 50.00 183.00
22 0.253 0.351 18.42 50 −24.97 −1.31 25.00 183.00
23 0.269 0.345 48.28 75 −24.97 −1.31 25.00 183.00
24 0.275 0.343 72.07 88 −24.97 −1.31 25.00 183.00
25 0.313 0.329 0 0 0 0 0 0
26 0.313 0.329 4.42 25 0 0 0 0
27 0.313 0.329 18.42 50 0 0 0 0
28 0.313 0.329 48.28 75 0 0 0 0
29 0.313 0.329 100.00 100 0 0 0 0
30 0.313 0.329 72.07 88 0 0 0 0
31 0.410 0.291 4.42 25 24.97 1.31 25.00 3.00
32 0.374 0.305 18.42 50 24.97 1.31 25.00 3.00
33 0.357 0.312 48.28 75 24.97 1.31 25.00 3.00
34 0.434 0.281 18.42 50 49.93 2.62 50.00 3.00
35 0.492 0.257 18.42 50 74.90 3.93 75.00 3.00
36 0.270 0.433 48.28 75 −51.24 22.35 55.90 156.44
37 0.276 0.418 72.07 88 −51.24 22.35 55.90 156.44
38 0.308 0.524 4.42 25 −26.27 23.66 35.36 138.00
39 0.316 0.444 18.42 50 −26.27 23.66 35.36 138.00
40 0.317 0.410 48.28 75 −26.27 23.66 35.36 138.00
41 0.317 0.399 72.07 88 −26.27 23.66 35.36 138.00
42 0.418 0.450 4.42 25 −1.31 24.97 25.00 93.00
43 0.382 0.407 18.42 50 −1.31 24.97 25.00 93.00
44 0.364 0.386 48.28 75 −1.31 24.97 25.00 93.00
45 0.357 0.379 72.07 88 −1.31 24.97 25.00 93.00
46 0.522 0.377 4.42 25 23.66 26.27 35.36 48.00
47 0.447 0.370 18.42 50 23.66 26.27 35.36 48.00
48 0.410 0.362 48.28 75 23.66 26.27 35.36 48.00
49 0.509 0.333 18.42 50 48.62 27.58 55.90 29.57
50 0.566 0.299 18.42 50 73.59 28.89 79.06 21.44
51 0.297 0.577 18.42 50 −52.55 47.32 70.71 138.00
52 0.310 0.503 48.28 75 −52.55 47.32 70.71 138.00
53 0.313 0.479 72.07 88 −52.55 47.32 70.71 138.00
54 0.368 0.525 18.42 50 −27.58 48.62 55.90 119.57
55 0.360 0.471 48.28 75 −27.58 48.62 55.90 119.57
56 0.356 0.453 72.07 88 −27.58 48.62 55.90 119.57
57 0.437 0.472 18.42 50 −2.62 49.93 50.00 93.00
58 0.409 0.439 48.28 75 −2.62 49.93 50.00 93.00
59 0.399 0.427 72.07 88 −2.62 49.93 50.00 93.00
60 0.502 0.421 18.42 50 22.35 51.24 55.90 66.44
61 0.457 0.407 48.28 75 22.35 51.24 55.90 66.44
62 0.563 0.373 18.42 50 47.32 52.55 70.71 48.00
63 0.618 0.330 18.42 50 72.28 53.86 90.14 36.69
64 0.300 0.564 72.07 88 −78.82 70.97 106.07 138.00
65 0.343 0.561 48.28 75 −53.86 72.28 90.14 126.69
66 0.345 0.532 72.07 88 −53.86 72.28 90.14 126.69
67 0.394 0.521 48.28 75 −28.89 73.59 79.06 111.44
68 0.389 0.500 72.07 88 −28.89 73.59 79.06 111.44
69 0.444 0.481 48.28 75 −3.93 74.90 75.00 93.00
70 0.432 0.467 72.07 88 −3.93 74.90 75.00 93.00
71 0.492 0.443 48.28 75 21.04 76.21 79.06 74.57
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