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Figure 1: In this study, participants were asked which side of a colormap data visualization (left/right) represented data of greater
magnitude. We applied 10 color scales to each of 8 conditions for each colormap: 2 granularity levels (grid/continuous) × 2
background colors (black/white) × 2 two data distributions (shifted or unshifted).

ABSTRACT

To create effective data visualizations, it helps to represent data using
visual features in intuitive ways. When visualization designs match
observer expectations, visualizations are easier to interpret. Prior
work suggests that several factors influence such expectations. For
example, the dark-is-more bias leads observers to infer that darker
colors map to larger quantities, and the opaque-is-more bias leads
them to infer that regions appearing more opaque (given the back-
ground color) map to larger quantities. Previous work suggested
that the background color only plays a role if visualizations appear
to vary in opacity. The present study challenges this claim. We
hypothesized that the background color would modulate inferred
mappings for colormaps that should not appear to vary in opacity
(by previous measures) if the visualization appeared to have a “hole”
that revealed the background behind the map (hole hypothesis). We
found that spatial aspects of the map contributed to inferred map-
pings, though the effects were inconsistent with the hole hypothesis.
Our work raises new questions about how spatial distributions of
data influence color semantics in colormap data visualizations.

Index Terms: Visual reasoning—Information visualization—
Colormap data visualizations—Color cognition

1 INTRODUCTION

When creating data visualizations, it is helpful to represent data
in a way that is intuitive to observers. These intuitions stem from
observer expectations about how visual features should map to con-
cepts, called inferred mappings [5, 9, 10, 12, 21–24, 26, 30]. Un-
derstanding inferred mappings is crucial for effective visual com-
munication: when inferred mappings match the encoded mapping
specified by the visualization designer, the visualization becomes
easier to interpret [7, 9, 12, 14, 22, 24, 32, 33].

*e-mail: zimnicki@wisc.edu
†e-mail: chint@cs.unc.edu
‡e-mail: danielle.szafir@cs.unc.edu
§e-mail: kschloss@wisc.edu

In this paper, we focus on inferred mappings for colormap data
visualizations (“colormaps” for short), which represent quantity
using a gradation of color (“color scale”).1 To design colormaps that
match observers’ inferred mappings, a key consideration is deciding
which endpoint of the color scale should map to larger quantities in
the data. We focus solely on color scales that increase monotonically
in lightness. We do not consider divergent color scales (light and
dark at both endpoints) or rainbow color scales [3, 11, 17, 31, 35].
For color scales that vary monotonically in lightness, previous work
suggests that several factors combine to influence whether observers
infer that darker vs. lighter colors map to larger quantities.

Dark-is-more bias. The dark-is-more bias leads to inferences
that darker colors map to larger quantities [5, 10, 21, 28]. Cuff [5]
provided early evidence for this: when asked to interpret colormaps
with no legends, participants inferred that darker colors represented
“more.” McGranaghan [10] investigated whether the dark-is-more
bias was actually a special case of a contrast-is-more bias. If so, the
dark-is-more effect observed when the background is light should
reverse when the background is dark. McGranaghan [10] found that
participants consistently inferred darker colors represented more
on both light and dark backgrounds, though less so on the dark
backgrounds. This challenged the notion that the dark-is-more bias
was a special case of a contrast-is-more bias. But, contrast effects
have been observed in other domains, such as in visual search [18].

Opaque-is-more bias. Schloss et al. [21] studied the effects of
background for colormaps made using different color scales. They
identified the opaque-is-more bias, which leads to the inference that
regions appearing more opaque map to larger quantities (i.e., dark
colors on light background and light colors on dark background).
The strength of this bias (and effect of background lightness) de-
pended on the degree to which colormaps appeared to vary in opacity
(quantified using Opacity Variation Index). The strength of apparent
opacity variation depends on how closely the color scale interpolates
linearly with the background color (“value-by alpha” maps [19]).

When both dark-is-more and opaque-is-more biases are activated,

1Various terms are used for visualizations that represent continuous data
using gradations of color. Here, “color scale” refers to gradations of color
used to construct a colormap (also known as “ramps” [29], and “colormap”
refers to a data visualization that represents quantities using gradations of
color, such as in maps of weather patterns or visualizations of neural activity.
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they work together on light backgrounds (darker regions appear
more opaque) and conflict on dark backgrounds (lighter regions
appear more opaque). Under such conflicts, the opaque-is-more
bias can reduce, or even override the dark-is-more bias, resulting in
inferences that lighter colors map to more [1, 21]. Critically, when
colormaps did not appear to vary in opacity, background lightness
had no effect on inferred mappings (i.e., no contrast-is-more bias).

Hotspot-is-more bias. Schott [25] suggested people expect re-
gions in hotspots—concentric rings of data like those found in
weather maps—map to more. Sibrel et al. [28] tested whether a
hotspot-is-more bias exists, and if it could override the dark-is-
more bias. They found that hotspot-is-more and dark-is-more bi-
ases worked together when hotspots were dark but conflicted when
hotspots were light; under such conflicts, the dark-is-more bias
dominated over the hotspot-is-more bias (leading to inferences that
darker colors mean more) [28]. However, when hotspots were highly
salient, the hotspot-is-more bias dominated—observers inferred that
lighter colors mapped to more. Thus, spatial structure can impact
inferred mappings.

Direct associations. The previous biases focused on perceptual
factors, but another factor concerns the direct color-concept associa-
tions with the data domain (e.g., foliage, wildfire, sunshine) [20, 24].
When lighter colors in the colormap are strongly associated with the
data domain (e.g., light yellow is strongly associated with sunshine),
those direct associations can override the dark-is-more bias [24].

2 MOTIVATION

From previous work, it follows people will infer darker colors map to
larger quantities, regardless of background lightness, if the following
conditions are met: (1) the color scale does not appear to vary in
opacity, (2) the colormap does not have salient light-colored hotspots,
and (3) the colormap does not represent data about something with
strong direct associations with light colors within the colormap.

In this study we considered that cases might exist in which these
conditions are met, yet observers will infer that lighter colors map
to more. This idea stems from Bartel et al. [1], who investigated
inferences about the meaning of colors in Venn diagrams, which are
systems for visually representing logical propositions [34]. Tradi-
tionally, shaded regions in Venn diagrams indicate “non-existence”
of an entity represented by that region [27, 34]. However, Bartel
et al. [1] proposed the hole hypothesis, which predicts people in-
fer the opposite: regions appearing as “holes” in Venn diagrams
map to non-existence. Regions appear as holes when their surface
properties (e.g., color, texture) match the surface properties of the
background of the display, resulting in the appearance that these
regions are “owned” by the background [2, 13, 15]. Supporting the
hole hypothesis and contrary to Venn diagram conventions, Bartel et
al. [1] found that participants interpreted Venn diagrams consistently
with regions appearing as holes that represented non-existence.

We hypothesized that if a colormap has a large black region on
a black background, the region will appear like a hole, and this
could activate the opaque-is-more bias even if the color scale used
to construct the colormap does not appear to vary in opacity (hole
hypothesis). For example Fig. 2 shows two colormaps; Fig. 2A
does not appear to have a hole as none of the colors match the
background, whereas (Fig. 2B) appears to have a hole because
the large black region matches the background. We focus here on
perceptual holes as described by [13], and distinguish these from
regions indicating a lack of data (e.g., [37]). If the hole hypothesis is
supported, the probability of responding that darker colors represent
larger values (“dark-more responses”) would be reduced for maps
presented on a black background compared to on a white background.
A sufficiently strong effect could override the dark-is-more bias,
leading participants to make light-more responses for colormaps on
a black background. Thus, we would identify a condition in which
people infer light is more, while the aforementioned conditions are

A B

Figure 2: Shifted colormaps created using Plasma/Magma+ [8] color
scales. (A) should not elicit the percept of a hole because the large
dark area does not match the background. (B) should elicit the percept
of a hole, as the large dark area matches the background [13].

met: (1) the color scale does not appear to vary in opacity, (2) the
colormap does not have salient light-colored hotspots, and (3) the
colormap does not represent data about something with strong direct
associations with light colors within the colormap.

To test this hypothesis, we conducted an experiment assessing
inferred mappings for colormaps that varied in data distribution,
background, and color scale, to create colormaps varying in how
much they appeared to have holes (Fig. 1). We also varied gran-
ularity (grid or continuous) to test if effects might be stronger for
colormaps with smooth gradations rather than sharp edges.

Contributions. Our results make the following contributions.
First, we identified spatial factors, data distribution and granularity,
contributing to inferences about the meaning of colors in colormap
data visualizations. Second, we found that these factors were mod-
ulated by color scale and background, but not in ways we would
expect based on prior work. Though our results raise unresolved
questions concerning the role of spatial factors in inferred mappings,
we have shown that it is crucial to account for the spatial structure
of data when considering color semantics in data visualizations.

3 METHODS

Participants. Our target sample size was n = 1600 (n = 20 per
condition). This sample size was determined by simulating expected
error rates and standard deviation based on results from a study
with a comparable design. We randomly sampled responses with
replacement for n = 5− 22 in each condition and calculated the
standard deviation at each n for 20 sets of hypothetical trials. We
set n = 20 subjects per condition based on this sampling to keep the
predicted standard deviation below 2% for all conditions.

Participants were recruited through Amazon Mechanical
Turk/Cloud Research, restricted to workers in the US with at least a
90% approval rating. The experiment took < 5 min. and participants
were compensated with $0.60. We collected data in batches until
there were least 20 participants in each of 20 conditions who passed
the exclusion criteria. Due to random assignment and participants
sometimes dropping out, sample sizes ranged from 20-27 per condi-
tion. We analyzed data from 1723 participants (1,038 women, 665
men, 11 nonbinary, 1 agender, 1 demigirl, 1 queer, 1 genderqueer, 2
genderfluid, 1 transmasculine, 1 none, and 1 preferred not to say).

Participants were excluded if they did not complete the task and
submit to mTurk, or if they did not pass the color vision test. The
color vision test had two parts. Participants typed the number that
they saw in each of 11 Ishihara plates (or typed “none” if they
did not see a number). Then, participants were asked: (a) Do you
have difficulty seeing colors or noticing differences between colors,
compared to the average person? (b) Do you consider yourself to be
color blind? Participants were excluded if they made errors on > 2
plates or answered yes to at least one color vision question.

All participants gave informed consent and the UW–Madison
IRB approved the protocol. Data, code, and color coordinates can be
found at https://github.com/SchlossVRL/spatial_maps.

Design, Displays, and Procedure. Participants were told that

https://github.com/SchlossVRL/spatial_maps
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Figure 3: Example experimental trials for the (A) unshifted and (B)
shifted grid colormaps, and corresponding Sigmoid curves for the
(C) unshifted and (D) shifted conditions used to sample the values at
each point for generating the colormap images.

they would see colormap data visualizations representing “measured
data.” As in [10], they were provided no details about the source of
the data to avoid effects of direct associations [24]. The maps would
be displayed one at a time, and their task was to indicate whether
the measured numbers were larger on the left or right side of the
colormap (Fig. 3A-B). For each colormap, one side was biased to
be lighter and one was biased to be darker (left/right balanced over
trials). Below each side was a horizontal line and label indicating
whether the side was ”left” or ”right.” Colormaps were presented
without legends so we could probe inferred mappings directly, as
in [5, 10, 24]. This method is ecologically valid, as colormaps are
often presented without legends in the wild [4].

Participants were randomly assigned to one of 80 between-subject
conditions, which included 2 granularity levels (coarse vs. fine)
× 2 data distributions (dark-shifted, unshifted) × 2 background
colors (white, black) × 10 color scales (Autumn, ColorBrewer Blue,
ColorBrewer Red, Gray, Hot, Magma+, Mako+, Plasma, Viridis,
Winter) (see Fig. 1). In each condition, participants judged 10
colormap visualizations in random order. The 10 colormaps were
constructed from five underlying datasets, which were left/right
reflected, balancing which side was darker. We also collected data
for light-shifted colormaps, but focus on the unshifted and dark-
shifted conditions to test our key hypothesis. We will analyze the
full dataset in a subsequent paper.

Data distribution. To generate the colormaps in the unshifted con-
dition, we used a Sigmoid function S(x) = (L/1+e(K∗x))+d where
limx→0 S(x) = 0.8 and limx→1 S(x) = 0.2 (Fig. 3C). We shifted the
original Sigmoid curve along the x-axis such that limx→0.7 S(x) = 0
and limx→0 S(x)≈ 0.8 for the shifted conditions shown as Fig. 3D.

Granularity. The colormap visualizations with coarse granularity
appeared as 8× 8 grids (based on stimuli from [21, 24]). They
were generated by sampling from a Sigmoid curve with normally-
distributed noise applied. To generate the value for each cell in the
grid, we first applied linear interpolation to sample 8 points xi in
x : [0,1], and calculated the corresponding yi with a Sigmoid function.
After retrieving yi, which we used as means in the probability density
function of the normal distribution with σ = 0.1 to randomly sample
8 points as the column values. We clipped values that fell out of
the range of [0,1] so they fit within the range. The colormaps with
fine granularity were constructed as 200×200 grids that appeared
as continuous data. They were constructed by generating a 50×50
grid using the same strategy as the coarse granularity above, then
interpolating it to target size (200×200) by applying random normal

distribution with the mean of 4 adjacent point values and σ = 0.03.
Finally, we applied median blur with a kernel (n=5) to smooth the
colormaps. All colormaps were 627×627 px.

Background. The backgrounds of the colormaps were black ([R
= 0, G = 0, B = 0]) or white ([R = 255, G = 255, B = 255]), and
filled the monitor display. When the background was black, the text,
map border, and lines below the visualization were white. When the
background was white, these components were black.

Color scales. We applied 10 different color scales to each under-
lying dataset. We chose color scales that fell into five different “fam-
ilies”: monochromatic (“ColorBrewer Blue,” “ColorBrewer Red”),
achromatic (“Gray,”), hue spiral with black and white end points
(“Hot,” “Magma+,” “Mako+”), hue spiral with chromatic endpoints
(“Plasma,” “Viridis”), and hue segment (“Autumn,” “Winter”).

Plasma, Magma, and Viridis were created by van der Walt and
Smith for the Matplotlib library in Python [8]. ColorBrewer Blue
and Red were created by Harrower and Brewer (2003) [6]. Gray,
Hot, Autumn, and Winter are native to MATLAB. “Magma+” and
“Mako+” are adapted from Magma [8] and Mako (from the Seaborn
library for Python [36]) respectively, but we extended the light end-
points so that the lightest values were white. To make Magma+, we
(1) removed the 30 darkest colors, (2) appended 20 steps to the light-
est side of the scale by interpolating the lightest color (L*=97.850;
a*=-9.918; b*=29.506) with white (L*=100; a*=0, b*=0), and (3)
appended 10 steps to the darkest side by interpolating the darkest
color (L*=8.397, a*=19.905, b*=-28.862) black (L*=0; a*=0; b*=0).
To make Mako+, we (1) appended 10 steps to the lightest side by
interpolating the lightest color (L*=93.383, a*=-10.979, b*=5.533)
with white, and (2) 5 steps to the darkest side by interpolating the
darkest color (L*=10.359, a*=11.442, b*=-10.144) with black.

4 RESULTS AND DISCUSSION

When designing this experiment, we chose color scales that fell into
five different “families” (see Section 3). To test whether this structure
was reflected in the data, we used hierarchical clustering to group the
color scales according to patterns of responses [16]. The clustering
was computed over the proportion of times participants indicated the
darker side of the colormap represented larger quantities (averaged
over repetitions and participants) for each of the eight conditions
within each color scale: 2 shift conditions (shifted/unshifted) × 2
granularities (grid/continuous) × 2 backgrounds (white/black) (see
Fig. 1). Results of the hierarchical clustering are shown in Fig. 4.

The color scales fell into three main clusters, largely aligning with
our initial family classification. One cluster included the monochro-
matic color scales (ColorBrewer Blue and ColorBrewer Red), plus
Autumn. We call this cluster Monochromatic (Mono) because 2/3
color scales are monochromatic, acknowledging Autumn does not
fit the description. A second cluster included Gray, Mako+, Hot,
Magma+, and Winter. We call this Black and white endpoints (B&W)
because 4/5 scales have black/white endpoints, acknowledging Win-
ter does not fit this description. The third cluster included the hue
spiral color scales with chromatic endpoints (Plasma, Viridis) so we
call it Spiral. Work is needed to understand why Autumn and Winter
joined other clusters rather than forming their own as expected.

Figure 5 shows the mean proportion of times participants in-
dicated the darker side of the colormap meant larger quantities,
averaged over all color scales within each cluster: Mono, B&W,
Spiral (see Supplementary Material Figure S.2 for results separated
by color scale). The data are plotted as a function of data distri-
bution (shifted vs. unshifted) for colormaps presented on a white
background or black background, separated by granularity (grid vs.
continuous). We analyzed the data using a mixed-effect logistic
regression model predicting whether participants chose the lighter
(0) or darker (+1) region on each trial. The fixed effects were data
distribution, background, granularity, two orthogonal contrasts cod-
ing for color scale cluster, and all possible interactions. One contrast
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Figure 4: Dendrogram showing hierarchical clustering of color scales
according to responses for the 8 conditions within each color scale.

(Scale1) compared Spiral (+2) vs. Mono (-1) and B&W (-1) and
the other (Scale2) compared B&W (+1) with Mono (-1) with Spiral
coded as 0. The model also included random by-subject intercepts.

Full model results are shown in Supplementary Material Table
S.1, with main findings summarized here. Participants were overall
more likely than chance to choose the darker side (positive intercept;
β = 7.415, SE = 0.38, z = 19.722, p < .001). The probability of
dark-more judgments decreased for shifted colormaps (β = 0.818,
SE = 0.38, z = 2.18, p = .029). This effect depended on granularity,
with a larger decrease in dark-more responses for shifted datasets
when colormaps were continuous vs. grids (shift × granularity
interaction; β = 1.00, SE = 0.38, z = 2.66, p = .008). This two-
way interaction was part of a larger interaction with background and
Scale1 (Spiral vs. Mono and B&W scales; β = 0.915, SE = 0.34,
z = 2.72, p = .007).

To understand this 4-way interaction, we conducted separate
versions of the model within each color scale cluster (see Supple-
mentary Table S.2 for the full output of each model). We also
conducted intercept-only models for each condition to test whether
responses for each condition in Fig. 5 differed from chance after
applying the Holm-Bonferroni correction for multiple comparisons.
Results are shown as asterisks in Fig. 5, and the model output is in
Supplementary Material Table S.3.

Monochromatic. Only the intercept was significant in this model
(β = 8.867, SE = 0.47, z = 18.850, p < .001)—participants consis-
tently made dark-more responses for all eight conditions, regardless
of shift, background, or granularity (Figure 5).

Black and white endpoint. In this cluster, the hole hypothesis
predicted an interaction between data distribution and background,
with reduced dark-more responses for the shifted condition on the
black background due to a large region of map appearing as a hole.
Overall, dark-more responses were reduced on for the shifted than
unshifted condition (main effect of shift; β = 0.654, SE = 0.266,
z = 2.461, p = .014), but this interaction with background was not
significant (β =−0.015, SE = 0.254, z =−.062, p = .951; see Fig-
ure 5). Tests against chance indicated that participants consistently
made dark-more responses for all conditions except the shifted con-
tinuous condition, where responses did not differ from chance. It
is unclear why this effect of shift occurred on both white and black
backgrounds, and future work will address this question.

Spiral. We expected responses for the Spiral color scales to be
similar to the Monochromatic color scales, but they were drastically
different. There was an unexpected 3-way interaction between data
distribution, background, and granularity (β =−2.267, SE = 0.420,
z =−5.402, p < .001). For grid colormaps, participants made dark-
more responses more often than chance for all conditions except
dark background–unshifted. For continuous maps, participants made
dark-more responses more often than chance for the shifted con-
dition on the light background, but unexpectedly made light-more
responses more often than chance on the dark background (Figure
5, Table S.3). Thus, we found a condition in which participants
consistently made light-more responses, but it was not the condition
we expected. Future work is needed to understand this effect.
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Figure 5: Mean proportion of dark-more responses, averaged over
participants and color scales within each cluster (Mono, B&W, and
Spiral). Shift is on the x-axis and background color is using mark
fill (black/white marks indicate black/white backgrounds). Error bars
represent +/- standard errors of the means. Significant difference from
chance (Bonferroni-Holm corrected) is indicated near each point (∗∗
∗< .001, ∗< .05, ns = not significant. Single indicators of significance
placed at one x-axis location apply for both backgrounds.

5 CONCLUSION

We hypothesized that the percept of a hole in a colormap would
activate the opaque-is-more bias even if the color scale did not
appear to vary in opacity in isolation (Hot, Mako+, Magma+ color
scales, see Black and White endpoint condition). Activation of the
opaque-is-more bias would lead to reduced dark-more responses for
shifted maps on a black background, relative to the same maps on
a white background (hole hypothesis). In the extreme, this effect
could have led to light-more responses, inferring that lighter colors
mapped to larger quantities.

Yet contrary to the hole hypothesis, background did not signif-
icantly modulate responses for the B&W scales that had strong
perceptual evidence for a hole, but did modulate responses for the
Spiral scales that had weak perceptual evidence for a hole. For
Spiral scales on a black background, participants were more likely
than chance to make light-more responses. Based on the Opacity
Variation Index [21], Spiral color scales should not appear to vary in
opacity and should not appear to have a “hole.” The reason for these
results is unknown.

Our findings raise new questions about the contributions of spatial
configuration and granularity to inferences about colormap data visu-
alizations. These variables have an effect on inferred mappings and
they interact with background color and color scales in unexpected
ways. Although future work is needed to explain these effects, our
study has shown that it is crucial to account for the spatial distribu-
tion of data when considering color semantics in data visualizations.
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S SUPPLEMENTARY MATERIAL

Table S.1: Logistic mixed-effects model predicting probability of choos-
ing the darker side from data distribution (shift), background (bg), gran-
ularity (granular), and two color scale contrasts (scale1 and scale2,
see text for details). Note: β represents the regression coefficients,
SE represents standard error, z represents z-scores, and p represents
p-values.

Fixed Effects β SE z p

Intercept 7.415 0.38 19.72 < .001
Shift 0.818 0.38 2.18 .029
Scale1 −1.387 0.34 −4.12 < .001
Scale2 −1.026 0.42 −2.44 .015
Bg 0.145 0.38 0.39 .699
Granular −1.271 0.38 −3.38 < .001
Shift*Scale1 −0.128 0.34 −0.38 .704
Shift*Scale2 0.693 0.42 1.65 .099
Shift*Bg −0.485 0.38 −1.29 .197
Scale1* Bg 0.524 0.34 1.56 .120
Scale2*Bg 0.011 0.42 0.03 .978
Shift*Granular 1.000 0.38 2.66 .008
Scale1*Granular −0.411 0.34 −1.22 .222
Scale2*Granular −0.590 0.42 −1.40 .160
Bg*Granular 0.283 0.38 0.75 .452
Shift*Scale1*Bg −1.098 0.34 −3.26 .001
Shift*Scale2*Bg 0.139 0.42 0.33 .741
Shift*Scale1*Granular 0.500 0.34 1.49 .137
Shift*Scale2*Granular 0.516 0.42 1.23 .220
Shift*Bg*Granular −0.144 0.38 −0.38 .702
Scale1*Bg*Granular 0.915 0.34 2.72 .007
Scale2*Bg*Granular −0.098 0.42 −0.23 .815
Shift*Scale1*Bg*Granular −0.811 0.34 −2.41 .016
Shift*Scale2*Bg*Granular 0.116 0.42 0.27 .784

Table S.2: Mixed-effects logistic regression model predicting probabil-
ity of choosing the darker side from data distribution (shift), granularity
(granular), background (bg), and their interaction for each cluster of
color scales (Mono, B&W, Spiral).

Monochromatic

Condition β SE z p
Intercept 8.867 0.470 18.850 < .001
Shift −0.071 0.277 −0.257 .797
Bg. −0.134 0.277 −0.485 .628
Granular −0.274 0.277 −0.989 .323
Shift*Bg −0.143 0.277 −0.515 .606
Shift*Granular 0.052 0.277 0.187 .852
Bg*Granular. −0.032 0.277 −0.118 .906
Shift*Bg.*Granular 0.099 0.277 0.357 .721

B&W Endpoints

Condition β SE z p
Intercept 8.908 0.460 19.347 < .001
Shift 0.654 0.266 2.461 .014
Bg. 0.087 0.254 0.343 .732
Granular −0.730 0.268 −2.729 .006
Shift*Bg −0.015 0.254 −0.062 .951
Shift*Granular 0.382 0.265 1.440 .149
Bg*Granular −0.049 0.254 −0.192 .847
Shift*Bg*Granular 0.140 0.254 .551 0.582

Spiral

Condition β SE z p
Intercept 6.490 0.585 11.097 < .001
Shift 1.543 0.460 3.352 < .001
Bg 2.089 0.435 4.802 < .001
Granular −2.335 0.416 −5.609 < .001
Shift*Bg −2.529 0.408 −6.201 < .001
Shift*Granular 2.206 0.421 5.232 < .001
Bg*Granular 2.375 0.417 5.693 < .001
Shift*Bg*Granular −2.267 0.420 −5.402 < .001
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Figure S.1: Examples of trials on the white background (left) or black background (right) conditions. The colormaps shown in these trials are
coarse granularity unshifted maps generated using the Mako+ color scale.

Table S.3: Mixed-effects logistic regression models predicting probability of choosing the darker side from intercept only for each of 24 conditions.

Condition β SE z p
Shift/Grid/Spiral-BW/White bg. 11.99 1.810 6.624 < .001
Shift/Grid/Spiral-BW/Black bg. 12.220 1.822 6.706 < .001
Unshift/Grid/Spiral-BW/Black bg. 8.926 0.984 9.068 < .001
Shift/Continuous/Mono/White bg. 10.33 1.280 8.066 < .001
Unshift/Continuous/Spiral-BW/White bg. 8.092 1.011 8.003 < .001
Unshift/Continuous/Spiral-BW/Black bg. 7.983 1.032 7.736 < .001
Shift/Continuous/Mono/Black bg. 9.825 1.422 6.908 < .001
Shift/Grid/Spiral/Black bg. 12.220 1.822 6.706 < .001
Shift/Continuous/Spiral/White bg. 11.99 1.810 6.624 < .001
Shift/Grid/Mono/White bg. 9.405 1.426 6.597 < .001
Unshift/Continuous/Mono/Black bg. 8.983 1.362 6.594 < .001
Shift/Grid/Mono/Black bg. 9.860 1.498 6.582 < .001
Shift/Continuous/Spiral/Black bg. −10.694 1.662 −6.434 < .001
Shift/Grid/Spiral/White bg. 11.069 1.759 6.291 < .001
Unshift/Grid/Spiral-BW/White bg. 6.410 1.187 5.400 < .001
Unshift/Grid/Mono/Black bg. 7.966 1.477 5.393 < .001
Unshift/Grid/Mono/White bg. 6.406 1.500 4.269 < .001
Unshift/Continuous/Mono/White bg. 5.651 1.332 4.242 < .001
Unshift/Grid/Spiral/Black bg. 2.283 0.732 3.117 0.011
Unshift/Continuous/Spiral/Black bg. 1.978 0.821 2.408 0.080
Unshift/Continuous/Spiral/White bg. 1.188 0.848 1.401 0.644
Shift/Continuous/Spiral-BW/Black bg. 1.305 0.960 1.359 0.644
Unshift/Grid/Spiral/White bg. 1.284 1.297 0.990 0.644
Shift/Continuous/Spiral-BW/White bg. 1.337 1.465 0.913 0.644
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Figure S.2: Mean proportion of dark-more responses, averaged over participants and separated by color scale. Shift is coded on the x-axis and
background color is coded using mark fill (black/white marks indicate black/white background, respectively). Error bars represent +/- standard
errors of the means.
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